GOVERNMENT OF INDIA

AROH/EOLOGICAL SURVEY OF INDIA

- CENTRAL ARCHÆOLOGICAL LIBRARY

ACCESSION NO. 18308
CALL No. $550.9 /$ Car
D.G.A. 79

A(GUIDE TO EARTH HISTORY)

BY

RICHARD CARRINGTON

ILLUSTRATED BY

$\frac{50.9}{60 \pi}$

PENGUIN BOOKS

IN AssOGIATION WITH
GHATTO AND WINDU

Penguln Booke Ld, Farmondsworth, Middleves
 Miocham, Victurie

Firnt putblished by
Chatso ind Windas 109 gh Published by Pengula Bowka roy

$$
\begin{aligned}
& \text { Ace. No........../8 \$08........... } \\
& \text { Date } \\
& \text { (2) } \\
& \text { Call No. 55:-9/Cas. }
\end{aligned}
$$

For Panther
WHO SHAKED THE EKCTTEMENT
(ND TNTE NORE

On the stip Earth which beare the throtgh immensity towindt an end that 首 only known to God, we are aretrige pasengers - emigrant wha lenaw only thetir ówh misfortuse The leant
 they ask whas the woyage of homanility began, and how much

 depath below and go out by the hutetawisy; they usk whan socrets are cosocenked in the bowele of the myserious ohip, and are Inhhery that they do not korw the arawer. Guters, tho greal majority of the pabserigern, content thenuelvea with mere exigknet, looking forward each dey to a tornorrow than they bope will be better,

You and I beloag to the etathes and daring company who wish for krowledge and are never sulatied with anf rephyr These mand egether on the prom of the ship watchiful log

 fort one another by ppecaking of the shore to which they earotelly belicuc they sail, whert they will merely metivo oto dayp where even tombtrow, perhapa, ihey ainy come to anchor. Nop

 is the chore of" the land of thele dretara, "where the fir is sor
 all their hevers-and liss name in Tratho

CONTENTS

PREFAGE t
Part 1 Prodggue：The Eard
1 THENEARTHIN STA日E I5
2 THE OREGTE OF THE EAPTH 22
 －9
4 THE AGE AND EVQLUTION OF THE EARTH 37
5 WITAESEEG OF THE PAST 4 E
6ithe encendar or Earth history 57
Part in The Procersian of Lift
7 WITAT IS LIFE？ 56
 72
9 TJE FIRET OREANISAS 83
 92
 104
I2 THE AGE OF FISHES 115
 123
I4 TME AOR OF THE QOAL FOPRSTS 133
IS THE MIDDLE KINODOM 140
［6 THE DINosAUPa 152
TH THE RETURN TQ THE EEA 163
18 THE CONQUEGT OF THE AIR 172
19 DEATH ANB \＆甘－ H （HTH 180
 187
21 THE FROZQN WO\＆工D 202
Pakt 1ri The Rise of Mankind
qn man's relatrong 21
23 men df the DAWM 24
g4 The First eurgpeans 29
25 HOMO SAPREMS TAKES TME STAOP 롤
26 sciencer, Art, AND RELIGJON 248
SELEHTED JF日IEDGTAFPY 957
INDEX 2 崖 2

LIST OF PLATES

13. Animalr of the Age of Invertebrater
b. Hody of the gigantic cephalloped Exdourar poloforme, wathed up of a Palacorevie shore
Ra. Typical frethwater phacoderns: Euthocarthur and Climatur
 Clodaseliacher
git. Exthentiverom, at air-breathing crosupterygian fith of the Devonian Period
b. A primative amphibian on the sheres of a Devorition eswary
14. A labyrinthodou fin a typical wwamp of the Age of the Conl Foresis
5a. Two finskacked reptiles frem the Perrmian of Texas. DimetTefon and Edaphatres
b, Manaralalike reptilea pit the Lower Tringic of South Africa. Kaxemeyeria and Greprohha
6in. Platecxaury crossing the Geman denters of the Triasic Period
b. The fonty-ton sayropod dindasur Browharauns
 attarking Triserataps
b. The duek-billed dimosaur Anataraery

Ba. An ichthywaur and a pleticauur = typical reptiles of the Mexosoic seas
b: Ahmsasaur atcacking Arhelow, a giant turtle of tho Cretatend Perion
ga. Rhomphonhyoles and three other pteresaurs
b. The giant pteroasur Pberanolsh

10a. Aratarepoterpys, the first bird
the Hepperomis and Ioktheymir
1Ia. Wintadherimat, a grotesque amblypord of the early Tertiary Feriod
E. Morgowr, ethalitothere
19. The giant groulit tleth Mogstimium and Glyptodon, a gigantic क्रmadillo
b. The anbre-toothed cat Smildodo whithe carcose of a young mastodon

List of Plates

 woolly rhinoceros, and wolves
5. Manmals of the Interglacial Periodl: Ejefter phifiquen, the nurbelis, and a hippopotamus
rfan. Autralopithecines figbtigg
b. Pekln mann cooking at an open air hearth
15. Neandertbal mant an extince cowin of roden toan

Ifin, The first true men: cave pointers of the Upper Palateolithic
bh Men of Central Europe twenty thensanel yeare ago

LIST OF TEXT FIGURES

Planets of the Solan System represented on the singe seale ra the sux

The batren Fanth before lilo appeared

A fosall mamaxioth skell, showing how the legend of the Cyclopa masy have originated

A fosalil ichthyodatr

Chatt to show the sequence of geolagical Eas and Feriods, and the time of the first apptactace of the varioul forims of life. Adapted from The Sucresivin of Lifa theough Geslogifalt Time by K. F. Oakley and H. M. Mur-Wood
Diagraion to show the relative lenght of the different stages in the development of life
Lamarckism in expienturt, by Caran deAche. From Symphong of the Eorlt by J. H. F. Umbgeove (N. V. Martinut Nijhofl, The Hagues

Life's Farnily Tree. Diagram to show probable velationships
of the difiterent forma of tillo

78

Limbs of trogr lurtle, bird, bat, dog, and man, demonm
itrating kimatip of vertebrate groups
Thre printitive orgnnam

Geography of the Cabibrian Beriod, superimposed on an
putiote map of the modern world

94

Radiolaria and Foramisitifa. 96
Amphinxur and Jumbylier
Silurian oftracedtrim:
The Devoainn crosepterygian Oiturtepis
Diphopowern, an extruotdinary amphibian from the Lowir Penozen of North America

Iga
spmavia, frosid the Permizan of Texas
141
 South Africa
Saltopswhens, in twall carnivormu thecodent from the Upper Triassic of Euroje

Sifgetaprus, a iten-ton armoured dinotaur from the Jurasic of Europe and North America
THList of Tent Figures
Soupthomimus，the＇ortrich mimbe＇ 859
The giant bipedat dinosasur Itwanswort 16%
PWatanthur four，an anmoured dinnowur about fifteen feet leng．thas Ilived in the Lile of Wiaht aso million years ago 164
Hzprilophaden faxi，a seall Cretaceoue dinotaur thar may bave lech artoreal
 Eichstadt 于雱
Geograptby of the Eepene Eproch วงร9
Diefyma，an Eocence Pightle bird，tatanding seven feet tall
 to a man in male 194
Anceatry of the borse and the elephant
Symblefoutes，a deer－like rurainant from the Fliocene of North America 195 195
An exrly Cenazaic reodenit cenled Hywrodan 197 197
Diviquom of the Great Ice Age 29．9
Dinemist，the froin，fromin New Zealand，nad Atfownis，trem Madagascar 2019
A tree shrew；Motharctury an Escene lemur；add a modern tarsier 空品
Promersul officener，up pasible forebsar of man 216
Tie Calemar of Human Histry 246
Implementr wed by carly man ${ }^{227}$
Implement of the Monsterian enllure x ${ }^{2} 3$
Skeleton of a woimath and a youth feund in the Grove dea Enfantat at Grimaldi 241
Implementre used by Upper Palacolithic maxa ${ }_{4}^{4}$
Figurine made by Upper Palaedithic man 44
A cow from the Lascaux caves 950
A bibon from the Altaniira caved 250

PREFAGE

Tuas book is an atterapt to answer in siraple, non-techrienl laph guage some of the questions asked by rellective popple conceraing the history of the Barlh and the way its life that ewolved. To compires the story of 3,000 mitlion youth fnter less than geo page is an mabitious. and pertapa foolbardy task. My exouse for atiempring it is that the subjecor, allthenget of albsorbing interen, flitile khown outaider ppecialist ciectes, and that muct of the material comporning, ht only otherwise available in text-bopk and sompe what tormideble tecthical momographas.

As presented in thene pagen the story of our Eurtf's past must neceefarily loe brielly rold and cannot lupe to be adequate to the grandeur of ita therse. I have newertheless dione al that I enn to make it at accurate and complete as poxible within the frame worl of a general and popular Eintory,

The period covered fit tom. Uhe origin ot the Earth ibelf untat the dawf of the characterstically bunalar phemonacmon known at civilustion, which eompleter the hivery of man as an mimal. if have added in the last chapter at purely permonal viter of the place that sacence, art, and relyigion may octupy in the bitepry of the Barth and of life, and of the opporcunities and dangers thar I believe may confront mankind at the present titper Thit in almort the only accation ot whech I bave basaken the recond of fact, and allowed myrett an exprossion of opinjon.

Although I. bave tried to produce a natchave requtring no prewious knowledge of any branch wi peience, I have pot insulted the reader by turring the eorrtert seltentifie Greck and Latin namer of the anjmale of the past info ingdequate Englith bome of theate
 and should be easily mastered by refentret to a good seicnific dietiontary.

It would be imposible to arknowledge individully my debt to all the authoritiok in gectlogy, palaconlology, gedphyic; axtron= omy, anthrepology, and other branches of seitence wheat original reseacher have coneributed so much to our knowledge of 祭arth history and whow brinh, as: expresed jin their writingly thave
 facte will be found la the bibliography on page 2s?

I wopld, however, Jile to express my sincerest persomal gratitude to those authotitied who have been kind encegh fo yead the whole
of part of the manumaript and to make many consuructive criticiama and sugrestions. These includes De A. T. Hopwood, Dr W, E. Swinton, Dr Erol 1. White, and Dr Maurice Burton of the Ditith Minseum (Natural History) ; Profesor F. E. Zeuner and Dr Ian Curnwall of the Institute of Archacology, Londion University Dr W. C. Osmen Hill of the Zoopgital Socity on Loodon, and ray friend, Dr Eliward Hindle, p.en. If the book has moly merit at
 entirely my own

My thante are also due to Mr G. B. Stratton of the library of the Zoologinal Society of London; Mr H. Br. Rowbatham of the Gbologial Library, Brithat Mureum (Maturnl Histary) ithe library wait of the Royal Anthropological Intitute, the Inatitute of Arechereolotyry and the Gritith Mureum, Bloomsbury; ; and enpecialiy to Mr Mnurion Wilson, whose kagniticent illustrations will be regarded by many people as the book's most attractive feature,
In conclusion, way I hopt that this hastory, with all its, thorth comings, will do something to satisly the curiosity and stimulate the imagination conceming the patt of the Earth and the mysurerfote evolution of life that has eaken place upon itu durface Earth hustory, like nateoncony and phiflosophyo in a selbisect that helps to briug the ansictits ond petty condicts of everydiy life into propar perpective I feel that thit fort nlone makes ita study worth while.

Prologue: The Earth

CHAPTER I

THE EARTH IN SPACE

There is no more awe-inspiring spectacle than the night sky, and nothing more chastening to human vanity than the Earth's apparent insignificance in the unbounded wastes of space. Contemplation of these things poses so many questions that it is not surprising that the Earth's place in the Universe, and its relation to the other celestial bodies, are problems with which every age has been preoccupied. They are an essential background to the Earth's own story and to the way that life has developed.

For primitive man even more than for ourselves the Farth and sky inspired emotions of reverence and terror. His viewpoint was different from ours, however, for he had not yet progressed very far in scientific knowledge and his emotions were rooted in magic and superstition. Also the true structure of things was hidden from him and he relied mainly on the direct evidence of his senses. For example, he believed that the Earth was a flat plain, moulded in places into hills and valleys, while the sky was a finite, domed ceiling, mysteriously illuminated by night with tiny globes of fire. His view was more personal than ours. He was interested in the forces of nature as magical or practical aids rather than from any desire to understand the laws that governed them. His world was, in fact, entirely centred on himself, and nature was good or bad according to her efficiency in providing for his everyday human needs.

The first theories of the Universe reflected primitive man's subjective attitude. The Earth, it was thought, being
the nearest and most familiar object of experience, must be the centre of things, and sun and moon, planets and stars, must revolve around it . This was a theory that could be subbsanariated by common sense, for even the most supurficial observation of the sky would show that sun and moon and planets moved in orderly progression fromt horizon to horizon,
This view persisted until quite late in human history. Its mest famous expression was khown as the Ptolemajc System evolved by theAlexandrian astronotier Claudiug Ptolemy in the second century a.D. This was based on the early ansurnptions of Greek and Egyptian science and was accepted in humars thought for neenly 2,000 yeirs. The Earth, said Ptolemy, lay at the centre of the Universe, and was encircled by a series of crystal spheres, regularty spaced and each supporting a planet. The sun, which was also regarded as a planet, lay on the fourth sphere from the Earth, while the eighth and outermost sphere, known as the Starry Sphere, carried all the fixed stars. The spheres revolved at different specds, and were reputed to give off sounds correspording to their velocities, which blended together to form a heavenly harmony.
It is agreeable to contemplate our Earth in this privileged positiont, its inhabitants listening entraptured to the straitis of a cosmic orchestra. But unfortunately modern secience has revealed a more austere prospect. Beginning with Copernicus in the fifteenth century, new speculationa were made concerning the Earth and its relatien to the outer Universe, and din old theories were gradually overthrown. Today the crystalline spheres with their heavenly harmonies seem like a fairy tale dream; in cheir placc, attronomy, the most majestic of the sciences, has revealed to ius a Universe in which our Earth plays the humblest and most insignificant of rola - a Universe where all human experience can be measured by a single tick of the cosmic clock and life itself may prove to be only a casual incident.
What, then, is the picture that modern science has built up for us of the Earth and its position in space? And how
can we learn from it a new perepective on Earch history, and the dtama of our planet's evolving life?' These are questions that nust be answered before we can tell the Eath's own story.

The Firth, as everyone knows, is one of the nine planets that circle round the sun. The sur is ste source nor anily of life, but possibly even of the Earth itself. It is one of the socalled 'fixed' stars, measuring B54, 1000 miles across with a surface temperature of $6,000^{\circ} \mathrm{C}$. Inside it is considerably hotter, estimates of its temperature varying from 20 million to 40 million degrets centrigade This if at least 6,000 Eirnes. hotter thint the most efficent electrie furnace that man has yet devised.

The sun's age must be reckoned in thousands of millions of ycurs, so evidondy its heat does not come from ordinary combustion, Even consldering its size, which is over if million times that of the Earth, there is no combuatible material that could have been burnt at such a rate for more than a few thousand yeats withous being expended. The explanction of this immenise source of energy is to he found in nuelear transformation. It is the conversion of hydrogen into helium in the sun's interiot that unleashes the energy to warm our Earth and maintain the complec patherms of life.

The planet spin round the san in nearly circtalar concentric orbits, the nearest, Mereury, at a distance of $\frac{3}{6}$ million miles, the farthest, Pluto, at $3,66 g$ miltion miles. Our own Earth is one of the neater planets, being distant only about gy million mides. To complete its orbit in a single year it has to travel at a speed of motere than 7o,000 miph.

The origin and nature of the planter will be discussed more fully in the next chapter, but betore moving out from the Solat System it size may perkops be made mort comprehensible by an ullustrabion. Let us suppose that the sun were reduced to a sphere four and a half fect acrom and that we began to walk away from it in a straghe line in yearch of the planets; at what distances would we come accoss their orbies? Well, we strould walk over effy yards before we reached a plaret at all, and then it would be only
the diminutive Mercury, no larger by our scale than a Wery mall pea. Next would come Wenus, and then Earth (Itir yardty, which would be the largest plinnet so far ronghly the size of a hall-inch marble. Beyond Earth the distances between suocessive planets would increase greatly so that with two exceptions each would be approximately double the last. First, act yards from the sun, would be Mars, and then, at Bg6 yards, the giant Jupiter, the largest

Planew of the Solar Sytion repreverted on the same ocule tat the sum. Letl to right: Abe of the Sun, Metaury, Venu, Eanth, Mars, Jopliner,

of the planets, a gaseous globe nearly six inches aceoss. On the final stage of our journey we should pats Saturn (1,533 , yardr), Uranus (3,084 yards), and Neptume (4, 日 39 yard 5), to arrive finally at Pluto af a distance of over three and a balf miles.

As these figures indicate, one of the most striking charatteristics of the Solar System ix the small size of the sun and planete compared to the distanoes which separate them. This prineple applies even more forcibly to outer space, Concentrations of matter in the Form of stars and planets
are infinitely rarer in the Universe than would be half a dozen golf balls scattered at random in the Sahara desere. This intense loneliness of the Earth, and the immensity of astronomical distances, can best be appreciated by a glance beyond the Solar System to the vast star city that contains it.

The system of stars to which the Solar System belongs is known as the Galaxy. It is shaped rather like a giant cartwheel with a thick hub, the stars being seattered at random through it, and the Solar System occupying a position near the rim. When you look at the Milky Way you are in fact looking along the 'spokes' of the wheel and viewing the Galaxy from the inside. This is why the stars of the Milky Way seem to be so closely packed: they are being seen one behind the other, as it were, so that they naturally appear more congested than the stars lying out at right angles to the 'wheel'.

The size of this vast Galaxy of stars defies any imaginative effort to comprehend it. Light, travelling at 186,000 miles per second, takes between 60,000 and 100,000 years to cross from one rim to the other; even to span the thickness of the wheel at the axleseveral thousands of such 'light years' are required. There are about 10,000 million stars in the Galaxy, many undoubtedly with a retinue of planets, and even the nearest star to Earth, known as Proxima Centaun, is so remote that its light takes over three years to reach us.

As if these figures were not staggering enough, the great astronomical telescopes have given us during the last half century an even more awe-inspiring view. They have shown that beyond the Galaxy, and at an immerse distance from it, the recesses of space are dotted with island universes every bit as complex as our own. These remote agglomerations of stars are known to astronomers as the extra-galactic nebulac, and the latest telescopes suggest the existence of over 100 million of them. They are scattered through space in every direction at fairly regular intervals, the distance between each nebula and its neighbour being somewhere in the region of it million light years.

To get an idea of this arrangernent of the outer Universe,
it may help il'we imagine each nebula as a thick dise with in diameter of between two and four inches. We should then picture to ourselve a wast 这lobe measuring two miles acrows, inside which these disc-like nebutlace are miraculously sus pended, onar own Galaxy in the eentre. The dises would lise seattered through the globe in every direction, wertically and horizontially, each being at an average distance of threc yards from ite neighbours. The surlace of the globe would of course be an artificial boundaty representing the maximum range of existing elescopes in obp own Galexy, and there would be no reabort to tuppose that the arrangement did not continue indefinitely. Stubsitunting for cach dise the huge bulk of a mebula, we may perhaps obtain some slight idea of the prospect ewoaled by the latest telemopes at Palomat and Mount Wilson Observatories.
And now, afler this digression jnto outer space, we must Hiterally come back to Earth. What have we learnt by the weyate and how may it affect our vision of Earth hispry?

The fiest eonsequence of any medication on the facis of astronomy must be a Eecling of the decpert humility. Against the wast backeloth of the Univeste we find that many of the basic assumptions ofordinary life are ealled in question, and even the subtler revelatiots of art and religion take on a new perspective. In history especially we must ascribe new meanings to the words 'progress ' and 'evalution', for our ultimate destiay en no longer be defined.

On an Earth pontained by the harmomients spheres againge an background of tinsel stars it was perhaps not difficult to find combort ins magic, or dogma, or faith. Much was inesplicuble, doubtles, in that wondrou progress from the darkness of creation to man's ultimate home in a gilled heaven, but the Way was laid down and the destiny of the individual and the race was not seriously in doubt. The new cosmology hat shattered this vision, Account muse now be talen of the new scales of distance and of time and especially of those tecently discovered worlds in the depths of spitee where other forms of life may exist, following a different patterin from ours and evolving to different ends.

The following pages, which deal with the origin of the Eath and the why its life has developed, are intended to be read with these possibilities in mind. There is no immutable law to say that scenes which have been erracted on a puff of stardust in a moment of time should bave any ultimate significanec. But only by knowing what they have been, and feeling the wonder of thern with fufficient intensity, can we hope to understand the workings of the Universe around th and have a glimpere of its meaning-

THE ORIGIN OF THE EARTH

Man has speculated on the origin of the Earth from the beginning of recorded history. Arguments encerming the method of creation occur in ewery xeligion, fom the mont primitive to dhe most advanced, and have given rise to many picturesque tales. For example; in the Babylonian creation we hear how the great god Bel Marduk lought the fernale dragon Tiamat, tent her in two, and sef up one half of her body to form the sky and the other to form the Earth. More poetionlly tha Taitirga Brathang, one of the sacred books of India, tells how the Creator, Prajapati, dived for the Eateh into the universal waters of the IIcginning : coming up with a haodfut of soil he spread it on a lotus leal that grow from the watere and fastened it down with pebbles

This conception of a liquid origin of the Earth is common in roost ancient mythologies. The Egyptians believed that the elements of Earth were cwolved in the primal chaos of the universal ocean, called Nu. A similar conception is found in Hebrew writings where the primeval sea is called 'tehom"; it was believed that the word of God caused tehom to be divided in two, the upper waters being stut up in luenven while the lower one cradled the Earth. Similar ideas are found today in different parts of the world. In owe Polymerian myth, for example, it is told how the ged Tangorm fishod up the world from the ocean; but unfortunately his line broke and it aldid onee more bencath the wawe, leaving behind only those Fragments known as the South Sea Islands.

But the most picturetque of all legends of the Farth's origin in that of the cosmic egg. Here it is in the simple language of the Chesthidg gye Cfornishad of India, which tells how Earth grew from meditation on Brahma, the timeles essente of the Universe: "In the beginning this was nonexistent. It became existimt, it grew. It turned into ath egg. The egg lay for the time of a year. The egg broke open, The

The Origen of whe Earth

two halwes were one of silver, the other of gold. The silver one beame this Earth, the golden one the sky, the thick membrane (of the white) the mountains, the thin membrane (of the yolk) the misk with the clouds, the small veins the river, the fluid the sea, This story of the origin of the Earth in the cosmic egrg if found throughout the whole of Eastern philosophy and religion,

Men's conceptions of the form of the Earth were as bizarte as their theories of its origint To some, at we have alresdy said, it was a flat plain with a dome of gtans to others it wis ar box-shaped mass floating on a limitless sea. Even the Romar Ploty, who had eead Greek authorities for the world's sphericall thape, could not quite understand why people at the antipoles did not fall oft.

Such lanciful conceptions persisted in different Forms until the sixtecnet ecntury. Even after that, scientista and other honest observers were derided and sometimes persecuted for daring to question the enuthority of tradition. We can understand, perhaps, why Gopernicus's great D_{E} Rewolutionidurs Orbiam Coulestivith was banned by the Holy Congregation of the Indus in 1616 because its author had asserted that the Eath travelled round the sum, What today seems almost incredible is that as reobently as a hundred years ago the vast majority of Europeans believed that the Earth had been created in sixe days.

Con ronted by sueh a tangled web of poetry and prejudice sclience was not able at first to make much headway, Even today mo sure answer can be given to the problem of the Earth's origin, and many time-honoured theorier are rupidly being superseded. For stample, it is now by no means certain that the Earch and the other planets originated in matter torn from the sum. It is at Jeast equally lekely that they once formed part of ant unkmown star now swimming temotely in outer epace.

The firgt theory of the Earth's origin that could be dignified by the degeription scientific wis that proposed by the German philosopher Immanuel Kant and elaborated by the French mathematiaine and astronomer Pierte Simon,

Maturis de Laplace. Lapdace, who was born in thumble circumstances, the fon of a peasent farmer in Normandy, wat one of those astonishing men of genius whoese ideas were deatined to change the whole course of human know: ledge. His "mebular hypothesis' for the origin of the Solar System was first published in $1 / 796$ as the seventh supplementary note to his Exphation du Systhme du Monds; it has since had to be abandoned, but is worth describing as the first serious attempt to elucidate the problem and as an stimulating influmen that has led to many later theories.

The Solar System, according to Laplace, may have begun as the result of an internal explosion in the sun, which dispersed its atroorphere into a buge lall of superheated gas extending far beyond the orbits of our present planets. The force of the sun's rotation was transferred to this agtenuated ball of gas so thite it gradually assurned the shape of a disc, or nebula, turning with a regular but faisly slow motion in the same direction ass the present planets' courses. Gritdually heat was dissipated from this dive by radiation into interstellar space, and as it cooled it began to shrink. Now it is a well-establithed scientific law that as the size of a rotating body getr less, to its speed of rotation increates. But as the tperd of rotation increase so does the force, known as eentrifugal force, which tends to make the object disintegrate There comes a moment when this centrifigal fores equalr, and then expeeds, the gravitational force which tends to hold the body together. This is what Laplace assumed to hove happened in the case of the sum, the Iesule being that the outerruost edge of the nebula, being no longer under the sun's gravitational pulli, was left as at giganuic ring in space. Other smaller rings were left until the surn had contracted to its presenu size. Laplace maintained that it was the condensation of these fings into spheres of gas that led to the creation of the planets.

It was an attractive theory, but unfortunately for Laplace it was open to several criticisms. Most of these are too techrieal to be gone into here, but what they really annownted to was that matter aimply does not behave in this way.

The Origin of the Earth

There is no known physical or mechanienl law which would explain the formation of gaseous rings of the type that Laplaee deacribed. Even less plausible was the suggeation that they could have actually condensed into planets.

Much more popular and longlived than the Laplate nebula hypothesis have been the hypotljeges of solat disruption. There have been several of these, but they all start from the same basic idea. Bricfly and simply put, this is that the sarface of the sun was disrupted by the impaet or mear appronch of another star, and that the Earth and the other planety were produced from the matter which estaped from the sun's surface at that time. As this theory the played an extremely important part in scientific thought we must examine it a litule more elosely.

The first man to speculate along these lines was, surpeisingly enough, not primarily a physicist or an astronomat but a naluralist. He was a contemporary of Laplace's and his name was Georges Lowis Lecierc, Oomte de Buffon, whose monumental Hirdoire Nifurethe we thall have several occasions to refer to in the chapters that follow, For our present purpose what concerns us is his statement, made in one of the volumes of thas book, that the planetary system originated in a catastrophic collision between the sun and some body Irom outer space. Buffon called this other body a comet, a fact which has led to the disregard of his theory, for the nutuerisl of comets is now known to be insuffiently oncentrated to produce anything like the required impact. Thut this is simply a confusion in terminology, for Bufton knew very well the physical requirements of such a body if it was to produce the effect he described. The main value of Buffor's contribution was that it established in scientific thought the possibility, even the probability, that the planets were forcibly torn from the sun by tome sorr of cosmic accident.

Theories based on this assumption have found considerable davour. The first was the somealled "planetesimsi liypothesis' pul forward early this eentury' by two Ameriant scientinss, T. C. Chamberlin, a geologist, and F. R.Moulton,
an astronomer. This theory did not suggest that in actual collision had occarred between the sun and some other body; it assumed oraly the near approach to the sun of a second stan. The gravitational pull of this star set up groat tidal bulget of gas on opposite sides of the sun's aurlace. As the star fenched ita nearest point these bulges became so great that explosive forces within the sun began to cject masser of sun material from them in the form of "boles'. Eventially these bolts pooled to form a vast masa of small solid bodied called "plametesimals', which circled the suti whder the intuence of its gratuthtiontil pull. Next the larger planeterimals attracted the smaller ones to them, and in this way the planets were built up by a process of aceretion, not, 䋨 is more thatatly assumet, by pooling and shrinking from a molten state

The theory axoused great incerest, but at with ith predecessoms reagons were brought Forward to show why it could not be true. "The objections were mainly bated on the theory's assumption that the planets had alway beten selid bodies. It was pointed out that some of the planeta were still very langely composed of gas, a lact that whe dificult to explain away in they were solld originally.

In an attenupt to meet these eriticismst the most recent of the solar disruption hypotheses was put forward in the late nineteen twentien ly the great British astronomer, 萝ir Jamed Jeans. Working with the geophysicist, Harold Jefferya, he reached the conclusion that the planets were originally gaseous and had been drawn from the sun's surface entively through the gravitational pull of the second star, unaided by explosive forces in the sun itself. The approach of this star, he asserted, had produed wayet on the sumps surface which had eventually growna so big that they had parted company with the win alpogether and streamed out into space in the form of a thin gaseorss dament. The instability of this thin stream of gas. had caured it to break up into several parts which had slowly cooled and condensed to form the planets.

This theory of Jeams's hats held the field for over is quarter
of a centure, but during the last four of five years it has been atgailed by the entirely revolutionaty view that the Earth and the other planets wore not produced from the sum at all, An cxample of this fuew approach is the theory of atomic dismption of an unknown star put forward by the two Cambridge scientist, R. A. Lytlleton and Fred Hoyle.

Leytleton and Hoyle began by ampllying a cricicism of the Jeans theory, fitst made by H. N. Rusgell, which said that if the theory were right the planets would have to be cixcling the sun at a very much closer distance than they actually are. On top of this criticism come the diseowery that planetary makerial containu elements of a very difereat kind from 'those normally found in the sum. In other words the sum would be a most unlikely souree for che kind of materials which eompose the Eath as we know it.

The altermative theory put forward by Eyteten and Hoyle jis bricfy as follows. The gun, , they say, thay once have formed part of what is known a a double star, or "binary system.". Half the stars in the sky conform to this patitern; that is to say, although they appear because of their remoteness to be single stara they are in reality pairs of stars revolying round each other like two dancera in a ballotom performing an endless acrics of natural turns. According to the theory the sun's companion star in this binary sybicem was of a type callied by astrommers a supernova. Supertovae are stars which, for tescons we need not go into heren tend to disintegrate with extreme violence due to atomic explosiona int their interior. Wher this happens a huge eloud of brightly incandetcent gat is projected outwhode at semeral miltions of miles an hour and the star nueleus that is leff behind recoils like a coomic canmon ball fred into the depths of space. Hut the gastes of the explosipu remain, and if, at Lytuleton and Hoyte atsumed, these were "captured" gravitationally by the companion stair-in thit case the sunthey would have formed a gaseou ring out of which the planets could have condenaed.

This, then, is one of the lateat theories to account for the Earth's origin, but the problemis still far from being solved.

All that can safely be said is that the Earth and the other planets were probably born at the same time; that the Earth has almost certainly passed through a gaseous stage, and that its present appearance is due to the transformations it has undergone during a long period of contraction; and that, so far as we can tell, it is the only planet in the Solar System that can support life as we know it. With these factors in mind we can now ask what science has to tell us about the nature of the Earth itself and the way in which it has evolved.

CHAPTER 3

THE ARCHITECTURE OF THE EARTH

What do we know of the strueture and proportions of the Earth on which we live? And what are the means by which this knowledge is obtained? These are the questions that we must now answer.

The study of the Earth as a physical entity is known as geophysics, a science that deals in its broadest application with every aspect of the Earth from its centre to a point many miles above its surfaec. Geophysics is divided into four main departments. The first of these studies the interior of the earth, or 'eentrosphere' as it is technically called, trying to deduce the nature of those mysterious regions that must be forever hidden from the eyes of men. The second deals with the Earth's surface, or 'lithosphere', telling us the nature of rocks and how valleys and mountains were formed. The third is concerned with the waters that lie on the surface of the Earth, known technically as the 'hydrosphere'. And the fourth deals with the Earth's outer covering of gas, or 'atmosphere', which has enabled life to develop and increase. For most of this book we shall be coneerned with the second of these departments of geophysica, the department studied by the scienee of geology; and we shall be particularly interested in the findings of historical geology which considers the Earth's surface as the theatre of evolving life. But to obtain a proper perspective a glance must first be taken at the whole picture.

Simply defined, the Earth is a nearly spherical mass of solid and viscous material measuring 7,900 miles in diameter. It is not a perfect sphere for it is slighty flattened at the poles, a faet which accounts for the degree of latitude being longer in high latitudes than in low ones. Its surface is sculpted into hills and valleys, and more broadly divided into great continental masses and deep ocean basins. Its interior, as will appear later, is usually considered to be
exeredingly hot, while the density of the Earth materiats increases ts one movea from the surface inwards towards the core. The volume of this enormous orange-shaped sphere is approximately $a 60,000$ million cubic miles.

The way such a complex structure may have evolved from a ma*es of whitling stardust, and particularly the growth of its surlace rocks, will be considered in more detail in the next chapter. Here, first of all, we are going to roview out krowitdge of the Earth's interior and see what sort of picture we can build up of that stramge, uncharted country, This pieture is essential if we are to understand the forces optrating at the surtioce
In recent years a great deall of speculation has been going on concerning the nature of the materials lying benenth the Earla's crust The researcher of R. M. Lees, P. W. Bridg" man, and others have revealed a multitude of new possibilitied which may bring about a complete revolution in our way or thinking on this subject. For instance, it has recently been suggested that the cort of the Earth may consist of highly compressed hydrogen, and that instead of cooling down it may be gradually heating up. These ideas at the moment ate ton controversial and contradictory to have found a gererally accepted place in scientific thought, and for this reason they will not be specintly tmphasized in thit and the Following chapters. Bet it should be remembered that the whole of the traditionsl concept of the Earth? architecture and evolution is now under fire, and that no definite conclusions are therefore possible. With this proviso in miod let ous set what kind of approach science has already made to the many problems involved.

The deepest mine in the world, the Robimson Deep in South Africa, is less than 10,000 feet below ground, an infinitesimal fraction of the total diameter of the Earth. It is obvious, therefore, that any direct knowledge we can have of the interion is extremely linxited, and our findings muth be based upon deduction. Yet even at thit comparatively thallow depth we find ourselves already in postestion of a zignificant fact: that the farther we descend into the Earth
the higher the temperature becomes. This, morcover, is a characteristic of all mines all over the world, irrespective of their latitude or the temperature at the surface.

Considering the comparatively small distance involved, the increase in temperature is spectacular, being no less than $16^{\circ} \mathrm{F}$. for every 1,000 feet, and sometimes even more. In fact, in the Robinson Deep, as in many other mines, an elaborate air-conditioning plant has had to be installed to prevent the miners from being roasted to death. Moreover, temperature tests taken down oil borings, which are the decpest man-made incisions in the Earth's crust, show that the heat continues to increase in proportion to the depth of penctration.

It follows that at no great distance from the Earth's crust the heat of the interior should reach $212^{\circ} \mathrm{F}$., the boiling point of water. This must, in fact, be the case, as is proved by the hot springz and geysers which gush forth in widely separated parts of the world. These are caused by water percolating through cracks and fissures in the Earth to a depth where it turns to steam, whereupon it is forced up once more under its own pressure into the open. In special circumstances the source of these geysers may be only a few hundred yards below ground, but the average depth at which vaporization occurs is one and a half miles.

As with water, so with rocks and minerals. At a distance of just over thirty miles below the surface, if we assume the same regular increase of heat, the temperature reaches $2,220^{\circ} \mathrm{F}$. or more, a point at which several kinds of rocks begin to melt. At $3,300^{\circ}$. ., a few miles farther down, no known rock could normally exist in a solid state. It is the emergence of this molten rock from fissures in the Earth's crust that causes the eruption of volcanoes, and has been taken by many authorities as proving the molten nature of the Earth's interior.

The source of this heat, and the reason why it has not long ago been dissipated by radiation from the Earth's crust, has been for many years a subject of seientific argurnent. According to an early view expressed by the nineteenth-century
physicise Lord Kelvin, the heat was produced by ordinary radiation from the sun material of which the Earth was originally composed. The Earth, in fict, what gradually becoming cooler and would end its career an a solid, cold, and lifiless planet In recent times this wiew has been considerably modified. The source of heat, it is said, is the gradual breaking down of radioserive elements in and below the Earlh's crust. This breaking down process is acoorzpanied by the mencase of large amounts of energy which are sufficient not only to maincuith the inner temperature of the Fartha, bute to compensate also for the radiation losses at its surfoce Modern weme thus offers wes the powibility of a surprising conclusion, ramely that we dwell on a hatural atomic pille and that, far from becoming cooler, the Earch3s internal temperatere may aetually be increasides, It must be remembered, however, that the internal temperature of the Earth has only a wry stight effect on the surfice tempera.ture, which is otherwiet entirely controlled by the sun"s rays. The emperature of the Earth's ente has been wariously entimated at $3,600^{\circ} 56,000^{\circ}$ G. or ewen morc, yet the heat reaching the surface from below the crust in about go million cinter less than the heat it weceiyet from the sun.

Having establithed the size and shape of the Earth, and made a guess at its internal temperature, scienec's next problem muse be to deduce the matire of its materiats. Except for the roeke of the Earibh's crust, which are readily acestible, we may well wonder bow we can give an account of materiats that carin never be directly exarnined. The problem is indeed a diffente one and many conflicting views have been expressed. Here wh shall restrict ourselves to describing a few of the lines of attack that have beet most comuthonly used.

The first of these is the study of meteoriten, which from time to time peneierate the Earth's atmosphere and cont to rest upon its surlave Meteonter are solidified particles from other celestial bodies, and have generally been regarded a samples of the materials to be lound within our own Earth. They vary greaty in aize, the smalleta being no larger than
pebbles, while the largest mula weigh between 100,000 and 200,000 pounds. The world's largest meteorite crater, near Winslow, Arizona, measures over 1,300 yards mitrom and must have been created by a meteorite, now deeply embedded in the Eatth, weighing several millions of tons. The most common materials in all the meteonites so far examined have proved to be merallice iron and stone.

Another important source of information concernigg the Earth's interior is the behawiour of earthquake waves. Earthquakes are the result of large-scale movements bencath the Earth's crust leading to a retrrangentent of the soirface rocks. The cause of these Earth movements is still unoertain, but their disastrous consequences to human beinga ate only too faniliar. Eatthquakes have their uses however - at least to the scientist - for the waves which radiate from eath centre of disturbance can be reporded by the delicate instruments known as scismographs, and used 的 pointers to the kind of materials of which the eentrosphere is composed. Three typos of waves ane recognized, passing reapectively through the Earth's decpest layers, the less deep Jayers, and the upper crust. As it is known that all the waves in any particular shock originated in the satme place and at the sarte fithe, we have only to record their times of atrival at any given seismological station to be able to work out their relative speeds. Attempts have been made to deduce from these the general nature of the rocks and minerals through whitch they have passed.

What picture can we build up of the structure of our Earth from these and the other measi of knowledge at our disposal? It seeme probable in the first place that the Earth consibta of a series of concentric zones warying greatly in complexity. Beginning from the surface, there is first is suecession of rocks, known as sedimentary rocks, which are actually visible to human eye in quarries and mines and on mountain sides. These sedimentary rocks are not regularly laid down one above the other like the layers of a cake, but for reasons that will appear later, ate often wom away, twisted and jurnbled tep, ts is they bad been battered by
some cosmic giant. Below the sedimentary rocks is a founda. tion of what are known as igneous rocks, from the Latin ignis, meaning fire. These rocks differ from the sedimentary rocks in that they have not been laid down through the action of wind and weather, but have been formed directly from a molten state by cooling. The most common example of this type of rock is the familiar granite found on Daremoor and in the English Lake District.

The solid sedimentary and igneous rocks form the main body of the Liarth's crust, and their combined materials make up a zone roughly forty miles deep. Although this sounds a remarkable thickness it must be remembered that in relation to the Earth's total diameter it is as thin as the skin of an apple. According to the traditional view this crust is supported by a band of rock known as basalt, which extends for a further thirty-five miles into the Earth's interior. Beyond this lies the great peridotite layer over 700 miles thick, possibly composed of the mineral olivine in a highly plastic state. Next, between the peridotite layer and the core, comes the thousand miles of the transition zone, whose constitution has always been highly speculative. Finally comes the core itself, more than 4,000 miles across and consisting, according to the traditional theory, of iron or nickel iron in a plastic condition.

The interacting forees of temperature and pressure at the heart of the Earth are on a fantastic scale. We have already spoken of the possibility that the Earch's core is at a ternperature of $6,000^{\circ} \mathrm{C}$. - an estimate which some authorities consider conservative. The pressures are equally enormous. It is estimated that Jess than half way to the Earth's centre the pressure of the overlying materials exceeds 20 million pounds per square inch: at the centre this is more than doubled, being somewhere in the region of 20,000 tons. The great heat, tending to increase the volume of the molten Earth materials and make them less dense, is counteracted by the almost inconceivable pressure which tends to squeeze them into a smaller and more solid shape. A constant war is therefore being waged between the forees producing liquid

The Architecture of the Earth

and solid states, with the result that the Earth's interior may preserve some of the characteristics of both.

Finally, in this brief survey of the architecture of the Earth, we must say a word or two about its atmosplsere. This extends upwards into space in all directions for a distance of several hundred miles, but after fifty miles it is already becoming extremely attenuated. At the Earth's surface the atmosphere consists prineipally of two gases, oxygen and nitrogen, the latter being nearly four times more common than the former. There are also small quancities of carbon dioxide and water vapour, and some chemically inert gases. As the air becomes more rarified with height, the amounts of the various gases in a given volume of air naturally decrease; hence the great difficulty of supporting life at the top of high mountains without an artificial supply of oxygen.

Although it is not obviously perceptible to us, the atmosphere has weight. The pressing down of the upper layers on the lower produces a pressure at sea-level of fourteen and a half pounds per square inch. We do not notice this pressure for it is applied equally to every part of our bodies, and they are sufficiently rigid to stand up to it without discomfort. But it is physically very apparent in aeroplanes and rapidly moving lifts when our cars begin to hurt owing to unequal pressure behind and in front of the drum. In extreme cases such variations in atmospheric pressure can lead to nose bleeding, or even to bursting of the ear drums.

In the form of the air we breathe the atmosphere is one of the basic necessities of life, but even in a less fundamental sense it has a great influence on our everyday activities. It is the source of our climate and our weather ; it is the medium through which our acroplanes fly; and until recendy it provided (in the form of winds, which are simply atmosphere in motion) the motive power for most of our ships and mills. Even in the acsthetic field its influence is felt, for it forms an essential part of the pageant of dawn and sunset and the sombre magnificence of stormy skies.

The atmosphere concludes this part of our enquiry into
the mature of the Earth. It brings us also to a good moment for recapitulating the discoveries we have made so far. We began with a picture of our Earth, intinitely lonely, swimming thrugh the vastness of space, as insignificant an a cork in the middle of the Patific Ocean. We looked at some of the theorjes put dorward for the origin of this tiny plamet, and saw how the whole of our history and preant existence has prolbably itcmmed from an inamense coumiccarastrophe. Finally we heve inspected our modem Earth at closer range, glancing bricfly at its surfine structure, dwelling in more detail on the myterions nature of ite interior, and concludz ing with al few flacts about its atmosphere. But there remain what are probably the two most Fastinatich problems of alll = the probleru of time and of growth. How long ago was out Earth created, and through what long ages did it slowly cvolve? If it is true that it originated in incandeserne stardust, haw did this turn to the complicated formations of its grological crust? How long was it Lifeless, and how did life deventually develop to ite pesent complexiry? These are the kind of questions that we must now attempt to answer.

CHAPTER 4

THE AGE AND EVOLUTION OF THE EARTH

Acgorpino to the swenternth-erntury Irish Atchbishop James Usher, the Earth wat created on Saturday, October gand, 4004 buc.s, at 8 otclock in the evening. This startling pronoumcement, with its plensing exactitude, was made in a book called The Aruabs of the Werld published in London in the year 1653 . Usloer had worked out his figures by much complicated addilion and subtraction of dater from the different chronologies of the Old Testament, and had the satisfaction of sesing them inserted by some over-zealous editor ar a marginal note in the King Jamer version of the Bible. This led to their becoritug accepted as a part of religious dogma, and for more than a cotutury it was heresy to believe that the Earth, with all its complex features, had tutken longer than 5,000 years to evolve.

The firse solentist to throw an intellectual grenade into this comfortable and orderly wheme wat the French naturalist Buffon, whom we have tilready met as the author of an early theory of the Earth's origim. In 177 , in his Eporiucs ${ }^{4}$ da Nolurf, Buffon proposed a new scale of time for Earth history, He was wise enough not to give definite dates, but diwided the Earth's past into seven epochs. In the first epoch, for which he allowed about 9,000 yesrs, the Earth cooled from an incandesent to a molten state The next 35,000 years or so eonstituted an epoch of gradual consolidation in which the crust began to talke on ite present form. Ins the third epoch, lasting from 150000 to 20,000 years, the water vapour in the atmosphere began to fall as rain, covering the Earth with a universal seat; at thas time also the first life began to appecar in the waters, and stratified rocks began to Form from marime sediments. The fourth eporlh of 5,000 years saw the retreat of the waters and the beginning of a period of interee velcanic activity. Finally three epochs saw
the appearance of the more advanced forms oflife, culminating in man, whose supremacy, it was assumed, would last untill the Earth cooled and life became extinct.

During the nimeteenth century a long and bitter war was waged between religious orthodoxy and the more seientifically minded who, following Buffor, stemanded an everincreasing allotront of time to account for the development of the Earth's major physical fratures. The orthodox thingers put up a good fight, but the pressure of accumulating facts proved too much for them. The paltry allowance of 6,000 years tor the Earth's ereation nud growth was extended first to too, 000 years, then to 400 million. Finally aven the protest of the faithful were stilled by the sublimity of the new conception, and today the age of the Earth is reckoned at the ditogethex inoonceivable figure of 3,000 million years.

What is the evidence that has driven ut to accept such vast vistas of time? This question can best be answered by a more detailed consideration of the physienl processes that have formed the Earth's crust.
Working on the assumption that our Eath originated as a spinnixy globe of incondescent gas, let us try to picture what happened when it began to cool. The first transtormation was from the completely gaseous to the completely molten. From this point, as we have already suggested, it semzis Hikely thas the radiouctive materials within the Earth maintained its internal termperature at a roughly constant level, of even, perhaps, increased it. This wat dot, however, tue of its surlace, which when it was still in molten Form wats undeubtedly lossing vast amounte of heat by radiation, vesulting in at quick fall in temperature. Eventually the surface temperature must have dropped to the point where the surface materials began to solidity and the molten sphere acquired a sollid renat.
The first effect of this was to atrest at the underside of the crust the convective currests in the molter material of the interior, which hasd domererly radiated their heat directly into surfounding space These currents, incidentally, played a great part in determining the inner constitulion of the Earth,
for they transported the Fighter materiakls, such as grantite and bassalt, to the surface, while the helavier inom and fronnickel sanks to the centre With the wolidification of a rocky crust the cooling of the Earth, was contiderably fetarded. Instead of being carried all the way to the surface by conveetion, the heat ate the last stage had to be slowly conducted through a racky thell.

The tendency henceforwatd was therefore for a balance to be struck betwoen surfice radiation and the generation of atomic heat in the interiot Until this occurred the crust gradually cooled, chickening as it did so, until a thermal equilibrium was achieved which has probably waried little throughous the Earelh's. history. But the techniemlities of this process arc of less interest to our purpose than the probable aspect of the surface at that time

The first toutlas to solidily wexe the so-ailled "dgnocous" rocks, which we defined, it will be remembered, na those which had been formed ditectly from a molter state by cooling. These began to make a crust on the Earth, th cream collecte on top of a charin or at the outer surface of a molten metal ball is the first part to solidify in a Foundry, In the carliest stages, of course, they were intensely thot, kadating a fieree white ficat. The Errely at this time must have looked like a gigantic liery lurmace, the stri-midten rocks seething and bubblity, and assuming a varicty ot Eantistic shapes as they groduatly hardened intor a rigid skin.

At that time the Earth had no atmosplere as wo know it. The rocks were far too hat to presmit the condensation of water vapour, of even the formation of clevds. The air was filled with the acrid furne thrown oft by the newly formed rocks, and the heat witbin hundredg of miles of the Jarth's surface was of turmagimable fierceness and trength.
But gradaally, through many thouands of years, the Eath cooled, The rocky sutface, reinfloreed fom within by solidifying basalt, 8 gew thicker, Clouds began to form, at first in wispes and patches, and then in great massed banke that for long ages obsoured the face of the sum, covering the Esarth in a soribre and impenetrable shroud.

At lone lase, as the cooling process consimued, rain begat to (all. At firse it cotue in droples which were instandy waporized as they tow ched the sororching rocks beneath. But gradually the surface temperature dropped lower and lower witil it was below the boiling point of water; and then the rain bogan to rin ower the black rocks ins hot rivalets and to collect in the shallow deprestion to form the frye lake and pools. Never since has the Earth seer such rain as fell in those first centuries of its history : it came down lfom the

cloud bankes in a merciless deluge, $3 s$ if tit would go on for all eternity.

Bit at lenget a time came when the clouds began to disperser for the Earth's surface was athaining a more moderate temperatere and the eycle of evaporation and condensation was begirming to slow up. The steaming lawa fields slowly cooled and the tepid stepams combined Into mighty rivers which fed the first seas. The internal heat of the Earth ceased 10 alfect in any large degres the temperature of the surfare: instead the sun's rays, combintd with the Earth's Topograply, began to produce local climates, and with them
all the fumilhar and contrasting features of our everyday weather. For the first time in the Earth's history there began to operate the corrplex forces which rogulate heat and cold, and determine the incidence of drought and tempest and flocd.

It may now be asked how our present-day Eareh has been built up, and why moderig geolegists have allowed for the process such ar immense period of time. The evidence lies in the rocks of the Earth's crust. It has already been said that in addition to the 嗨neous rocks there ate fif large number of sedimentary rocks, and that although these appene to have been originally deposited in layers they are now twisted and Eroken as if by the hand of a cosmic giant. These roek Inyers were in fact laid down by the very weathering forces we have just described. Wiad, watery and ice, constantly ansaluing the surface of the igneont rocks, carried away particles of their surface and bore them suspended in river water to the sea. Here they were spread out in deltas and on the floor of the ocenn basins in the form of bed of sediment which gradually solidified into new rocks. Fusther layers were laid down on top of these and ware alfeeted by heat and pressure in different ways so that numerous distinct formations grew up. It has been estimated that if all these sedimentary rock strata since the beginuing of time had beten allowed so accumulate one on bop of the other they would now have reseched in thickness of at lesat nimery-five milet.

The reason that this has not occtred is that the Earth is conventionally believed to be a shrinking body. Lous of heat has led to contraction of the molten coren and the effect of this has been to set up immense lateral struits in the crust. The surflace rocks have been Empacted into one andther, and the cormplicated interplay of tensiont hat led to the ereation of mountain ranger and gigantic rift walleya.

The circumerence of the Earth is now actually believed to be about nipety-four milles shorter than it when at the time the crust was lormed, and ita surface area to have been
reduced by over $\mathrm{x} \frac{1}{2}$ million mquare miles. The result of this has been to forec upwards above the surface of the Earth more than $2 g$ million rubic mildes of solid rock. A large proportion of this roek, must have been of the sedimental type, which was subjected in its turri to the sime erosive forces that had attacked the basal igneous rocks. The effect of this was to went away oompletely some of the layers, while others were so altered and distorted by the pressure of the shrinking Earth as to beoome wrecoguizable. At the same time to add to the confusion, volcances and other subtertaneark forces were injecting new layers of molten igneous rooks between and above the sedimentary rocks, 50 that the rock record became distorted in the extreme.

With this picture in our minds we con now return to the question of the Earthrg age Even to the early nimetcench century serentiges it was apparent that the forces behind auch wast geological changet must hatwe taken an immense span of time to operate, Anyone who has been on a hillside during a thower of rain will have had d convincing demonstration of this 「act, A raindrop falls on the soil, and a minute particte of eath is washed perhaps a quatter of ann inch downhill. The process is repented on that partieular particle probably only two to three times in each shower. Yes these are the forces that through the long ateons of eoological time have washed away mountains higher than the Ander or the Hirnalayas, not once, but time and time again $=$ as often, in lact, as new ranges latue been upraised by the pressure of the shrinking Earth.

The realization of the way theme foress worked was first made by at Sottisth doptor named James Hutton. On March 7 th, 17 B $_{5}$, be read a paper to the Royial Society of Edinburgh whith wat to change the whole course of geoligical histary. It was called Tha "hary of the Earth and it set forth Hutdon's belief that the forees of wind and weather now in operation would have been eapable, if given suffient fime, of preducing every existing feature of the Earth's crayt. He was driven to the eondution that the Biblical creation was a figment of men's irnaginations, conduding his exsy thut: 'It is vain to
look for anything higher in the origin of the Eauth. .. . We find no vestige of a begiming, - no prospect of an end. "

The events of the next fifty years proved chat, despite widespread opposition, Hutton's theory was underiably true. It became known as the doctrine of ethe undiformity of rature", or "uniformitarianism", and was fully developed in the rimeteenth ecntury by the British goologist Sir Charles Lyell. Lyell's threc-volume Prineiper of toolagy, published between I易名o and I8gg, became, in fact the bible of the new sciane.

The scale of time having been to greatly extended, the next problem was to date the past of the Earth. The rate at which sediments accumulate in river valleys was quickly seen to be one method of doing this. Thes in 1852 excawitions at Memphis in Egypt exposed the foundation of a gigantic statue of Rameses II buried under nine foet of sediment. The age of the statue was known to be abouk g.vop yeara, and it was therefore a simple mateer to deduce the rate at which the deposits had been laid down In this way a rough yardotick wats created which eratbled age to be conielated with depth; for exitmple, when, a tew yean later, some burnt briek was discovered at a depth of forty feet in the same layer ${ }_{1}$ its age could be estimated with reasontable certaituty at about 83,500 years.

Alhough thic method is still satisfactory for dating the comparnively recent past, it is cipite inadequate for dealing with the long ages of geological time. The rate of deposition waries with the relief of the land and the fluctuations of climate, so for the remote past a more accurate mothod is requited. One such method is dexived from the rate at which the sea is becoming salt. Laymen are often sutprifed to learn that this saltiness is not a constant factor but ingresses steadily with time. The salt in the sen, it is now realized, comes from the sedimepte brought down by the great rivens. The insoluble particles are deposited on the sea floor in ever-growing layers, but many of the salts reman in tollution. When the sun evaporates water from the sea aurtace, these galts are left behind. The evaporated fresh water falls again
on the land in the form of rain and brings down further salt and sedimenta, so that the salinity of the sea is continually being increased.

It secms obvious that by estimating the amount of salt held in sollation by the world's ofeans and dividing it by the annual rate of deposition by the world's rivers, we should सhrive at d figure for the age of the Barth. Thie has been done, and the resultery figure comex out at about pop million ycars. Unfortunately, however, this estimate is jpacourate, and as moment's thorght will show us why, Firaty, atid most obviously, the walt-impregrated layers of sediment at the bottom of the sea have many times in the Eardh's history been squeceed and folded upwands to form dry land, as has already been desertbed. This dry land is then croded all over again, but being ithelf of undersea origin, the new sallo it produces only serve to falsify the alculation. Alow the height of the lands bordering the oceatis determine the rate of deposition, and this height has not remained constant throughout geological timer In short there are tor many impondenbles in this method to make it more than a wery rough guide.

Fortunately, however, there is now one way of dating the Earlhis patt that can claim to be entierely practical and acareate. This it based on the properties of the radioactive materials which are known to form part of the Earth's crust. These make an extremely valtemble geological cock by whith wefentists can tell to within a few million years how old a particular rocks formation must be

We have already told how the rodicataive elemente in the rocks are graduanly betaking down and givin舵 off the heat that mantains the Earth's internal ternperathre. The main agencies of this hind are the elements uranium and thori:um, and as these change their state by radioactivity they betome iti succexion a netmber of diferent elements. Finally they become stablet, and this end product in Found, surprisirgly enough, to be ordinary lead.

Fortunately the rate of radionetive decay is found to remiain constant under the widest range of temperatuxe and
pressure. To determine the age of a rock, therdore, all that is necesary is to measure its lead content and compare it with the known rate of radionctive charge. The most ancient rocks so far measured by this raethod have proved to be the coarsely crystalline igneous rocks lonown as pegmatites from Rice Lake, Manitoba, whose age has been cettimated at about $z_{2} \mathrm{I}$ or million retas. This confirms that the age of the Eath itself must be somewhere in the region of 3 , 1000 million years.

With this figure lnown, the probleru of Earth chyonologry becomes principally one of dividing its history into the main geologital periods. These are not arbitenrily laid down, but mark definite events it the Earth's evolution. 'They are milestones fixed by dramatic transiormations of the Earth's crust, often involving sweping changes in climate, vegetation, and animal life but before explaining them, we must first introduce thote silent witnesses of the phest who play such an all-important part in ous story - the fossils that tie buried in the rocks of the Earth's surface.

CEAPTEE 5

WITNESSES OF THE PAST

Fossila aee the remains of dead aminats and plants preserved in the Earth's crest, and the study of fossils forms in late part of the science of palabontology, a name that come from three Greck wordr meaning "the science of dncient bting', One of the valuable functions of palaeontology if to act as a kind of cornecting link. between the sciences of geology and biology, for if draw patt of its information fromi both. In his seatech for fossill remains the palaeontologist muse be well versed in geological techniques; he must know where to look for hise specimens, and how to exteact them form the rock when he has found them. But he must also know a great deal about many branthes or biology, especially comparative anatorny or he will be unable to interpret his finds or fill in the inevitable gaps in his record.

By the aid of fousils palaeontologista can now give us an excellent picture of the life of part ages. The palaenontologist is teally a "time detecife', whose clues are footprints and fragmentr of bone - sometimes aloo the temains or imprints of sixim and flesh. From these he reconstructs for wet only the murderous crimes of the past = although these were frequent enough - but also the apperaranec and habite of the many extraordinary creatures who preceded us in the domination of the Earth.

Not all remains of dead animals are regarded as fossila; to qualify for the name they muda bave been in existence for some considerable time. Nor are foasils necessarily the remains of extimet ampals; the bones of animals recently extinct, urless of great age, are not regarded as fotiols, while ancient remains of individuals ofliving species are. Antiquity is the sole factor determixing what is a fossil and what is not, but it is always diffalt to know where to draw the liner, For this reason palaeontolegist inde pornetimes heard to remark:
'If the rematins stink, give them to the zoologists; if not, they're ours.'

The word fossil comes from the Iatin werb foddere, meaning "to dig 比", and was originally given to literally faything that was dug up out of the Farth. For example Conrad Gesner, the great sixteenth-century swiw paturalist, regarded such objects as crystals and micient stone are-heald as fossils, despite the fact that they were of mineral origin. Gradually, however, the term became restricted entirely to organic remains, or the imprestions of organic objects, and this is the only sense in which it in now used.

Fossils may be found almest anywhere, but only very rarely in igneous rocks. This is because if an animal were ever unfortunate enough to lee enculfed by n molten lava flow the heat danost inevitably destroyed ine remains. Sometirnes, however, a natural mould of the wietim was presereed in vichanic materials. One of the most remarkable instances of this was found recently in Oregon, where an ancient rhinoceros had been overwhelmed by a tava flow. A few charred bones were all that was left of the animal itself, but a cavily exactly reproducing ite shape wat left in the solidinjed rock.

The main sources of lossils are the layers of sedimentary rocks lajd down over the agneous rocks by the action of wind and water. They are particularly cortupen in limes stones and colcarcous shales, but les so in such rocks as red sandstones whose chemical constitution is harmifal to orceranie remains. A dramatic picture can be built up in the imagination of how these fossilized remains capre to be barfed in the rocks many millions of years ago. A dead sea creature, perhaps, once sank slowly to the ocean bed, there to be covered by an cyer-thickening film of sand. The solt parts would decay, but the havd skeletom would in some tases be preserved. Or maybe a giant dinosaur, montally sick of wounded, would fall at last in the shallow water of a fiver delta. When death had claimed it, and the seawengers and makgots had done their work, its heavy skeleton would slowly sink in the soft mud to be covered in a shrosed of

A Gud do Eath Histoy

river-borne sediments. Then, many millions of years later, the slow contraction of the Eirth might lift this partienlar bed of batdened sodirnent, imeh by inch, century after century, until it formed the slope of some great mountain range. Iot and rain wowld rexurae their attack, and gradwally the skeleton would be weathered out to the surfiace, to be discovered perhaps too million years later by some excited palienotolegist.

Such processes have gone on from the beginning of time, and fossilised remains have been found in ewery period of human bintory. In the early days of scientifite knowledge naturalits were otten hard put to it to explain what fossile were and many quaint theoriea were propounded. Arstotle, for example, in the fourth eentury B.e., believed that they were spontaneously generated in the rocks by come mysteriou plastie foree whote working he what unable to explain. He devates much space to them in hi, Hetertid Animadiam, treating them as a distinct form ofliee, albeit of a somewhat inferior kind of natural born animals, His damous pupil, Theophrastus, modified this view. He agreed with Aristotle that fostila were of organic origin, but believed that theyr had grown from egge or seeds scattered in the rocks. One of the few Grecks to have guesed the true nature of foxsils was. the historian Hemdotus. He observed marine fossils in the desert during his travels in Ergyt and Libyed about 430 es.c. conduding, quite correctly, that the Mediterranges had once spread southward ower North Africa and that the fousith hatd beci left behind when it retreated.

Roman science did little or nothing to modify the carlitr therries of the Greels, and in the Datk Ages, alter the fall of the Empite, the whole subject was lost int a welter of ecolesiastic theory. The medieval charch encouraged the ideca of a siveday ereationi and an age tor the Earth of only a lew thousand years. If fossils were mentioned at all their true nature was either unknown or tactiully Igoored. Lay thinkers, if sutficiently daring, stated that they must hawe grown from getcms dropped from the stars, or have tallen fully formed from outer space. Extermists
regarded them as undoubted evidence of the ingenuity of the devil.

It was the digging of cinals in Italy in thon late fifteenth entury that reawakened acientific interest in the matter. The excavations brought to light depogits of foskill sea shelle too numerous to be ignored. These greatly intrigued the great Italean artist and scientist Losinardo da Vinci, who Was among the diste to ansert that they were the ternions of creatures that had onee been alive in the atear where they were found. This wiew, naturally enough, was wery unpopular with the clergy, but they had the ground cut from beneath their feet by the seventerndhementury Danish ecelesiastic Nicholas Steno, Steno was bora a strict Iutheran, becathe converted to Catholicism, and wis made a bishop by the Pope; undortunately, however, he wak also an emisent goologist and anatomist, and two years after his conversion came out in full support of da Winci's thebry of the origin of fossils.

The growing influence of the scientific faction exentually coused the Church to retreat to new powitions. Henceforwaral fossils were regarded ass the remains of creatwer that had been drowned in the Biblieal flood. The classic example of this wiew is contijised in a Latin worl published in 1726 by the German physician Jotiann Seheuchzer. The book was called Homb didapif textios or "Man a witnese of the Deluge", and contained a detription of sorme taeletal remains found at Oetwingen in Switzerland which scheuchzer interpreted ss men who had been drowned in the Flord. It was unfortunate, perhups, that some years later the French naturalist Baron Guvier re-examind these remains and found they belonged to giant salamanders of the genus Ampriar, but it says much for his sense ofleumour that he immediately gave them the specific rame of Andrids selewherafin.

Apart from the Flood theory, many people rebgirded the larger fossil skeletons as the remains of giants. To this day there is a phith in the Dauphine in France known as $1 s$ chomb der glants because of the recovery there in the teventemth entury of the bones of peehistoric elephants,

Mammoth skulls were particulatly popular with the giantmongers for, as can be sem in the accompanying illustitution, the twin masal opening in the middle of the head could easily be interpreted as the eye pecket of \rightarrow Cytlops. Hut the most entertaining comment of all, which eombines both Flood and giant theories, was that made in 1706 by Gover. not Dutley of Massachusctis, who had been shown what was later identified as a mastodon tooth from a peat bog near Albany, New Y'ork. After announcing that the toeth

A foxil matamoth akula, showing bow the legend of the Cyclops may huve graninated

'I am perfectly of the opinion thas the tooth will agree only to a human body, for whom the Flood only could prepare a funcral; and withost doubt he waded as long as he could keep his head above the clouds, but must at Iength be cons founded with, all other creature and the new sediment after the Flood gave him the depth we now find.' ${ }^{\text {b }}$
Despite the pioneer palacontological worlc of Cuwier and his follow countrymana, Jean Baptiste de Monet, Chevalier de Lamarck, the fossil controversy went on well into the minetenoth century. The triumph of Darwinism and the theory of evalution led to great heart-serrchings among gen who were both good scientists and geod Chuistbans. Sir Edmuxd Gose telle how his raturalist lather Philip Gosse,
a strict Puritan and a Plymouth Brother, was quite unable to reconcile the two points of view. Instead he out the Gordian knot by declaring that God must in fact have created the workd, as the Scriptures said, in 4004 B.ary but that He had done so with the fossils already in place. The reception of this theory proved that even the most reactionary intellectualls regarded the six-day creation at a Iost cause. We find Charles Kingsley writing to Gosse that he cunnof give up "the painful and slow conclusion of five and twenty years study of geology, and believe that God has written on the racks one enormots and superfluous lies. And even the high-mincled Victorian press ridiculed a theory which maintained, according to the popular interpretation, that God had hidden fossils in the rocks in order to tempt geologists into infidelity.

Fossils, then, for the last filty or sixty years, have been universally recogrized for what they itere. Their respectability is now accepted by the most pious, and they have become an indispensable aid to the Earth historian in his complicated task. It remains to enquire how they are pres served, and how they can be used as clues to the history of life.

The most common form of fossilization results from burial under water-borne sediments, especially at the bottom of the sea. Usually only the hard parts of the anumal are preserved, but oceasionally the imprint of the soft parts leaves a tracing on the rocks. For example, the muscle of a shark over goo million yeders obld ware in one specimen so perfectly preserved that individual fibres and their coso-striations could be clearly seen under the microscope. With sontbodied prehistoric creatures, such at jelty-fish and other invertebrates, these imprints provide our only elues to their appearance. It is unfortunate that compared to the preservation of bone structure they are always exceedingly rare.

Fossilized bones are often regarded as being literally 'turned to stone', but this is very seldom the case- Sometimes, admittedly, the bony material is replaced bit by bit
by entirely different mineral substances, and can therefore be regarded as an example of true petrifaction. Far more common, however, is the process known as "perminerializathen", in which the minute cavities in the buried bones beeome $\sqrt{\text { filled }}$ with particles of the surrounding mineral sediment, but without altering the nature of the original. The particles solidify, and in consequence the bone naturally feels heavier, but no chernical or mitueral change has taken place in the bone itself. As the bone and itw mineral filling are quite different in appearance and texture, the structure of permineralized remains can easily be studied in section under the mincoscope

A Foden jchehyonaur, The black arcas show where the impriat of the soft parts wat left gat the mitrix

Mention fas already been made of the natural moulds that are occasionally left in igneous rocks by animals that have been overwhelmed by lava flows. The same phenomenon can also oceur in other kinds of materials. When these moulds are in an good state of preservation artificial casts can be made from them which reprodure the original shape of the remains. Sometimes Nature herself has performed this tavk by filling the cavity with some mineral substance. Siliea or calcite especially are often found as a filling in such cavities, thereby making a natural cont,
Other intereting examples of natural moulds are those Isft by prehistoric insects in amber. Amber is the natural resin of ancient coniferous trees in a hardened condition. Frequently, when this resin was in its ratural glutinous state, unsuspecting insects alighted on it and could not detach
themselven ; as the resin accumulated they gradually became permanentiy entombed. With the passage of titne the soft parts of the insect shrivelled away, but the hard parts were preserved, and a perfect mould was left in the transparent amber. These moulds now preserve the complete shape and texture of the insect's body, so that every detail of its anatomy down to the finest hairs and wing membernes can be examined under the microscope.

But these are net the only types of fostilization. Many great animals of the past were mired in quicksands, peat bogs, or deposist of natural asphalt. At least noo mastodon skeletons have been recovered from the peat bogs of the Big Bone Lick in Kentucky, and when Thomas Jefferson was President of the United States he devoted a special room in the White House to fossil remains from this source. Asphalt is a particularly good preservative for fossids, Bacteria cantot live in it and the effects of decomposition are therefore minimized.

Trees and plants are less often preserved as fossils than animals as they lack a bony skeleton. However, truly pet* rificd tree trunks are by no means rave, the woody tissue being replaced by silica or calcium carbonate. The petrified forests of the United States are well known, and some examples of fossilized tree trunks can be seen not only in several British mescoums, but as exhibits in such homely surroundings as Lomdon's Regent's Park, Flowers, plants, and leaves are seldorn completely preserved, but we can leam much about their appearanes from the imprints they leave in the rocks by the process known as carbomization, As time passes, the volatile clement in plant specimens escape, but their carbon content remains, leaving an excellent carbon copy of their shape. The same process is responstible for most of the imprinte of the soft parts of animals which were deseribed above.

On very rave occasions, and under very special circumstances, the remains of a whole animal, both skeleton and soft parts, are preserved for polterity. The undal cause of this is not, strictly speaking, fossilization at all, but a process akin
to denp fiecaing. For examplep the careates of mammotha have been found on numerotss occasions frozen deeply into the Aretic tundra of Siberia and Alaska. The fesh of ote such mammoth, exposed by a fall in the bank of the Bercsovisa River, Eastern Siberia, was so fresh that it was eaten by scavenging doge 20,000 years after its death. In Alackan the remains of mammoth hair wocur in such profusion that they have been known to inteffere with the working of the gold digesings.

Claves and oil seeps are also occasional thured of complotely preserved rematins. There is thic famous instance of a yourty woolly rhimocreos and a young mammoth being proserved almost whole for many thousands of years in an. oill secp at Starunia, Galicia. The thinn and fur of giante ground slothe have also been recowered from exeeptionally dry caves in the United States and Patagoria. When some of this fur was discovered in the early tfogos it wats in such excellent condition that the theory arooe that specimens of these extinct ground sloths must still be allive.

Finally, before ending this survey of the variour kinds of lossils, a word must be said about two specialized types that are partioularly valuable to our palacontologist timedetectives. These are fossilized dung, or "coprolites" as they are bechnically called, and fossil trackwanys, Coprolited are quite common and give detailed information concerning the diet of many kends of extingt animals. Tonckways are of special value in telling us how thee ereatures wate to move.

Anmed with the evidence prowided by these silent witnessed of the past, the palacontologist can give us a surprisingly graplesidear of the Earth's former lise. From the bones thoustives, and from the rate remains of soft parts, fee can tell us very olten exactly what the animal was like. From the imprints of leaves and plants, and other related evidence in the rechs, he can tell us albout fes habitat lind the kind of climate in which it lived. Frorn coprolites he can tell ws about its food and conifirm the evidence of anatomy as to whether it was carnivorous or vegetatian or both. From fousil trackways he can tell us whether it was swift or slow,
whether it ran, hopped, or ambled. And so on, with a thousand other details of our predecessors' daily lives.

But the palapontologist is not a worker of miracles. He cannot, 35 is generally belfeved, xeconstract an extinct animal from a single bone. This belief is based on a misunderstanding of the laws of comparative anatomy which, although allowing certain dedwetions to be made about missing parts, do not permit us to be toospecificabout details, For instance, it is perfectly legitimate to reconstruet, siny, a right leg and foot as a mieror image of a lefteg and foot, but it is not therelore salie to assume that if two species ngree in one particular of their skeletons, therefore they must agree in the rest. The great Baron Cuvier himself Fell into this trap and formulated a law to express his convictions. This law received its most spectacular refutation in the famous case of the extinct mammal known at Chatiowheriwm. By ath the rules in the book, Choliapphertum had the kined of tecth that wete 'always' associated with hoots, and although no remains of the feet had beeri found, hoofla it was assuraed to hive. Pala contologists at a later date were therefore greatly discomforted to find that instead of hools Ghafinoblemium was equipped with enormous claw.

But the difficulties of the palatentologist are not only those of interpretation, The way in which he extracte his 'clues' from the rocks is one of the most skilled and arduous of acientific tasks. He uses a wide aelection of tools, ranging from hammer and chisel to rotary grindera and even dentists drills. Chemitily are also used, especially with very delicnte fosisits, and enable the most fragile of spines and skulls to be extracted without damage.

This xeview of palacontological techmique will perhaps indicate some of the pitfolls and difficulties besetting the study of fossils. Tut the rewards are great, for fossils, even nore than buried pots or writuen documents, ane the wery stuff of history. They speak not of hundreds of years, nor owen of thousands, but of tens of handreds of mullions - of a time when the Earth was peopled with creatures fat more mysterious and wonderfiul than any that live today, and
when man, with all his pride of wealth and civilization, was not even dreamed of. These strangely moving relics of a past infinitely remote, some bearing the marks of violence or disease, others hinting at the joyous life activities of creatures long since vanished from the Earth, come down to us to tell of the vitality and tragedy of the primeval world. They are the most important and reliable witnesses in our story of the Earth's past, for they alone were present in those distant ages, and the drama of which they speak to us is their own.

CHAPTER 6

THE CALENDAR GF EARTH HISTORY

We must now return to the question of Earth chronglogy This will be the last gentral problem whe thall have to considert bofore tetuing out on our long woyage through the agges to look at the changing pacterms of life and landerape.

As has been said, the Earth is approximately greop midlion years old, and thes histery lhas been punctunted by certain outstanding gealogical events. These events have divided the ealendar of Earth history into several clearly defined Agea or Eras, which are themselwes sulbliwided into a tumber of geological Periods. The arrangement of these Eras and Periods is shown on the Chare po page 5 g.

The carliest Etas are the Azoic and Proterozaic, whisth together lasted from the creation of the Earth untill goo million ycars ago - a totill of about 2,500 million years or five-sixths of the Earth's rotal age During the Azoic, or "Lifeless", Erat the Earch was still largely in a molten stath and such igroous rocks ats were formed went far too hot to support any kind of life. During the Proteroroie Frate the carlient lift forms were already stiming in the seas. With the Pandeozoic Eta, which mears "the era of aticjeme jife", we embark on that part of the geological record of which we can give an fairly full account, for theough this and the succeding Mrawoie ("middele LiEe") and Cmozoic ("recent life") Eras, there is an abundance of geciogical and fossil evidence. We eurselves are living in the seventh division of the Cenozoic Era, known as the Holocenc.

Unlike the great Ifas, whose namea are based on various qualifieations of the Greck word roen menning 'fife', the numen of the Perbods ane nainly based on geolegicall formam tions. Thus. "Cambrian" is named afies "Cambria', the ond Roman word for Wales, where rocks of this age were first investigated: Offlovician is numed after rocks in an area formerly occupied by the Celtic aibe of the Ortowies:

Chart to show the sequence of geological Eras and Periods, and the times of the first appearance of the variout forms of life. The two parallel liser at the top of the Chart represent the Pleistocene and Holocene Epochs, or Quiternary Period. None of the divisions is strictly to scale. (Adapted from The Succestion of Lifo through Grelogical Time by K. P. Oakley and H. M. Muir-Wood.)

Silurian after another Celtic tribe, the Silures; and so on. When we come to the Cenozoic Era, however, its subdivisions, which are known not as Periods but Epochs, are named after various qualifications of the Greek word kainos, meaning 'recent'. Thus Eocene means 'dawn of the recent', Oligocene 'few of the recent', Miocene 'less recent', Pliocene 'more recent', Pleistocene 'most recent', and Holocene 'wholly recent'. The term Palaeocene, meaning 'ancient dawn of the recent', is also employed to mark the period of transition between the Mesozoic and the Eocene.

This calendar of Earth history is in universal use all over the world, although other subdivisions are sometimes added, and there are occasional differences in the names of the Eras. For instance, some geologists do not agree that the Azoic Era was entirely devoid of life, and therefore use the term Archaeozoic ('primordial life') instead; while older authorities follow the plan laid down by the Italian professor Giovanni Arduino in the eighteenth century, which recognized only three main divisions named Primary, Secondary, and Tertiary. Under this system the Primary and Secondary corresponded respectively to the present Palaeozoic and Mesozoic Eras, and the Tertiary to the present Palacocene, Eocene, Oligocenc, Miocene, and Pliocene Epochs. A fourth division, the Quaternary, was added in 1830 to represent formations laid down singe the end of the Pliocene, and although the names Primary and Secondary are now obsolete, the names Tertiary and Quaternary are still in common use. Very few variations occur in the naming of the Periods, the only cause for confusion being possibly the American custom of calling the carlier part of the Carboniferous the Mississippian and the later the Pennsylvanian.

The dates shown on the Chart for the duration of the various Eras and Periods are in accordance with the latest findings of Earth chronology, especially the radioactivity method, but geologists nevertheless always date events by the name of the Period in which they occurred rather than by reference to a numerical scale. This is to avoid ambiguity, for there are still many differences of opinion with regard
to absolute numerical chronology. Thus when a geologist refers to rocks of the Permian Period, his collengues are able to identify exactly what he means even if they adopt a sontwowht different time seale in metual years. Subdivisions of the warious Periods, referred to as Upper, Middic, and Lower, are treated in the same way, the Lower series of recke being bbyinusly earlier in bime than the Midele and Upper, because they were the first to be laid down

We come now to the reason why the divisions betwen the different Efas and Periods thawe been matde where they arre. As has been salid, these were not arbitrarily fived, but correspond with definite geologieal events. Moreover, these events seem to have repeated themselves in a regular rhythm throughout geologicall time, as it some mysterious pule were beating in the Earth to mark the passing of the ages.

What is the dature of these eventa that have punctuated Earth history like the clumes of a geological clock? 'Their moest characteristic.manifestation has been an intensive period of mountain building. accompanied by an uplift of the contiments and a general retreat of the seas. At the 敗me tirme volcanoes have burge into life and vast masses of molten rock hawe been injected from below into the surfate rocks of the Earth's crust. Climates have become extreme, ies-caps have formed at the poles, and the thow and hail falling on the slopes of the newly ralsed morntains have termed to great rivete of ice. In the biologetell field many sew types of animals and plants have developed by the strange proces known as "explosive evolution ', whith weshatl be destribing more fully in the chapters that follow.

Since the formation of the Earth's crust there have been at Lease three of these episodes of interse activity. One occurred about poo ruillion years ago at the beginning of the Cambrian Period; another about 250 million years ago between the Carboniferous and the Permian, and a third during the Pleistecene - as episode from which we are only just emerging. There may have been others in the long ages before the Cambrisn, and there are certainly traces of at least one loe Age dating from that time; but the great age
and general inaccessibility of the Pre-Cambrian rocks, and the changes they have undergone through heat and pressure, make it impossible to give any definite verdict.

The intervals between these episodes of revolutionary activity have lasted approximatcly 250 million years and have been occupied by one or more of the great Eras of geological time. Thus the Palaeozoie Era began with the first episode and ended with the second, while the Mesozoic and Cenozoic Eras were contained between the second and third. Each episode with its succeeding Era scems, moreover, to have followod a consistent pattern and to have recurred in cyelic form with threc elearly recognizable seages. The first stage is eomparatively short and is characterized by the beginnings of volcanic activity, mountain building, and the uplifting of the continents that has just been deseribed. The second stage, also not of long duration, sees these processes reach their peak; the world becomes a place of grand continental masses and towering mountains, bordered by comparatively small but very deep seas. New volcanoes belch fire and lava, the ground is rent by earthquakes, and extremes of climate lead to great changes in the habits and forms of life. In the third stage, which is many times longer than its predecessors, the forces of crosion gradually wear down the great mountain ranges and pile up layer upon layer of sediment in the seas. The continents become lower, the seas shallower, and the waters once more begin to gain upon the land. Climates are increasingly equable, and life settles down to a more leisurely rate of evolution. Finally, the beginning of the next great episode completes the cycle and ushers in another era of revolutionary ehange.

Now if this cyclic form applies to the great Eras of Earth history, can it be detected also, although in less elaborate form, in the geological Periods? The answer almost certainly seems to be that it can. The Periods, in faet, mostly behave in this respect like miniature Eras, beginning with some traces of Earth movements which quiekly reach a peak and are then suceceded by a long process of erosion. The main difference between the cycles of the Eras and Periods is that
the former are on an altogether larger and grander scale and probably arise from far more deep-seated tercestrial causes.

The way in which mountaine are formed and continents upraised jow reabonably well understood, but the cause of the chythonec occurtence of these events is still a subject for epeculation. Various attempte have beet made to relate the great ages of mountitn building to happeninga in outter space. For instance, the $2 g$ golllion years required for the major Earth cycles is approximately the same as the time taken for one revelution of the Galaxy. This has been regarded by some authoritieg as signifleant, but how the two bappenings are connected is still unexplained. A move promising hypothesis in that of thermal cycles in the interior of the Earth. This postulates alternating periods of heat aceurnulation and deereasing temperature below the Earth's crust, which would undoubtedly have preduced the Jhythmic series of Eath revolutions that are known to have occurred. But unfortunately the hypothesis merely transfers the problem, for the cause of rhythrnic thermal cycles is as mysterious as thythmic mountain building.

Whatever the fuodamental cause of the Earth's regular heare brats, however, we are at least futly aware of their eflects, The association of mountain building with the other phenomena of eavh revolution is particularly interesting, and there are numerous thedries to show why the warious developments should have conscided. Somp of the lipks ate obvious enough. It is not surprising, for example, that the raising of the lands and the sinking of the ocean floors leads to I I retreat of the water; nor is there anything unexpected in the relationahip of Eartly movements and volcanic actiwity". What in less clear is why mountain buisdine should produce such a marked change on climate and consequently on fuimal and plant lite.

The elimatie problem has not yct been satisfactorily solved. Some authorities suggest that wast clouds of volcanic duat are thrown high into the atmosphere during revolutionary periods and persise for a considerable time. The effect of thene dust clouds is to scatter or reflect the sun's rays, thus
producing colder conditions. The theory is not satisfactory, however, for the revolutionary periods give rise to arid deserts as well as ice-caps, and of these there is no plausible explanation.

Other theories are based on events in outer space such as the sunspot cycle or the phenomenon known as the precession of the equinoxes. The full explanation of these theories is too technical to be gone into here, but they are based on the general principle that a number of cosmic factors exist which regularly influence the Earth's climate. When these factors are, as it were, all puiling in the same direction, they produce different climatic results on the Earth to when they are working in opposition. But there is still no clear reason why such results should coincide with episodes of mountain building.

Having outlined the various fixed 'dates' in the calendar of Earth history, there remains only the problem of assigning rock formations to their appropriate Periods. This can often be done by the radioactivity method already described, but there are also a number of useful ways of correlating formations with others in different areas that are suspected of being of roughly the same date. A double check is thus obtained, and we can get a picture of events that have happened at the same time in different parts of the world. Methods of correlation are based partly on geological evidence and partly on information derived from fossils.

To take first the purely geological evidence. The simplest method is obviously to be able actually to trace a rock stratum from one point to another. Even though the type of deposition may vary from point to point we can then usually say with safety that the two ends of the stratum are of the same date. Unfortunately, however, this is seldom possible, except in very limited areas, and geologists have to fall back on other criteria. For example, valuable clues are provided by rock strata being laid down in similar sequence in different areas, or being affected by the same kind of heat and pressure changes, or, in the case of sedimentary rocks, by their similarity to other strata derived from the same
source. But none on' these methots is a wery great improvement on dirett tracing, for their validity is still restricted to neiglabouring lands. For world-wide correlation the most important method always has been, and probably alwaya will be, by reference to "index fossils".

One of the noost valuable characteristies of biological evolution is that, although its rate has varied greatly from atge to age, it kuts never changed a great deal from area to area. On occasion, of course, evolution lias been somewhat more adwanced in one area thath in another, but never so greatly as to throw the whole great process out of step. Thus, generally spoaking, a rock formation bearing certain types of fossits in one continent may be safely correlated with one bearing similar, if not identical types, in another. This is one of the great ways in which palacontology has aided out study of Earth history, It has enabled us to relate the great rock lormations to particular Periods in goological time, and to gain al lar more accurate picture than would otherwise be posible of the way the Eath has evolved.
The calendar of Eurth history, built up patiently by auch means, revents some astonishing facts, For example, of the 3 3,oom million years shen the Earth's origin only the last thited hiss left any traces of lite. The great natural class of the mammats, which contains all the animels mest farniliar to ur, has been prominent for onty foor 的 million yeara; thit is only about half of the period oceupied by the great reptiles, and less than a tenth of the whole history of life, Mant, the most advanced of the mammals, and the latest experiment of the evolutionary process, hias a history that thin only be reckoned in thoustads of years.

Sueh fegurea are almost impossible to comprehend, but they can perhaps be simplified by an illustration. If we imagine that the whole of the Earth's history were compressed into a single yeaw, then, on this acale, the first eight months would be completely without life. The following two monthe would be devotod to the most primitive of creatures, thaging from viruses and aingle-celled bacteria to jelly-fish, while the rusmmals would not appest until the second week
in December. Man as we know him would have strutted on to the stage at albout 11.45 p.m. on December $\mathrm{gast}_{\text {a }}$ ard the age of written history would have occupied little more than the last sixty seconds on the clock

The colendar of Earth history, then, like the immentity of rastronomical space, gives us a valuable lesson in humility-

Diagram to ahow the relative Itength of the dilterent ithged ifithe dewelopment, of lite. "The Age of Mmi it repreanted by the wingle werigal line
In the chapters that follow we shall walk down thee long averues and pause to wonder at the fantastic primeval zoo that is housed in such splendid profiesion and wigour alonge our route. Many of these creatures liave long since become extinet; they are our predecessors in the adventure of life Nature's Lavish failures who were destined newer to enjoy our own ewolutionary success. For this reison alone they are deparving of our most compassionate interent.

The Procession of Life

CHAPTER 7

WHAT IS LIFE?

Bepore we can attempt to follow the development of life on Earth there are two main problems to be considered. The first is to find, if we can, a satisfactory definition of the word 'life'. The second is to look briefly at the workings of organic evolution. Bound up with these questions is the ancient enigma of life's origins and the problem of whether evolution can be said to have any discoverable purpose or goal.

The question 'What is life?' seems at first almost too obvious to need an answer. I am alive, this book I am reading is not. A cow, and the grass it eats, although belonging to the different groups 'animal' and 'vegetable', are both alive: the pail into which the cow is milked, however, in addition to being 'mineral', is very obviously 'dead'. Apparently, therefore, there are two distinct categories; there is the organic, popularly exemplified by the Animal and Vegetable Kingdoms, and the inorganic, exemplified by the rest of nature. It should, one would think, be a simple matter to sort things into one compartment or the other.

Until recent years this was in fact the general opinion. A hard and fast line was drawn between living and non-living matter. Life was regarded as a special process carried on against a background of dead rocks and minerals, and the main problem was to discover how living things had intruded into this inanimate scene.
It is astonishing to consider in retrospect the extent to which this dual theory of nature has kept its place in human thought. Man seems to have hung on to the barrier between
living and nom-living matter with extrome tenacity, and apparently without any susphicion that it mightu bearetificially erected. As a rewult the question of the "origin' of life hass becein, and still is, w fundamentill enigma to the vast majority of mankind. In religion it has led to the many chanming Iegends of the creation, in which God is assumed to have produced the different ellasser of living things by a kind of celestial conjuring trick. In weience it has prodtuced some almost equally pieturesque theories, suth as those of Hieronymus Richeer and Lord Keslvin, which suggested that life, in the form orf tiny living spores or 'cosmazoans', was driveh here from other planets by the radiation presture of starlight -a a theory which incidentally orly served to transerer rather than to solve the probletin,
During the last few years, however, is more radieal approach has been made to the whole question. It is beginning to be suspected that the differenee bewween living and non-living matter, between the animal and the vegetrible on the one hand, and the mineral on the other, is less a difterence in kind than in complexity. In other words, it is felt that 'living" matter may have evolved from "dead' matter by as natural and uninterrupted a process as that which has seen the evolution of man wia an ape-jike ancestor from a Devonian air-breathing fish.
To understand this revolution in scientific thought it is necessary first of oall to coninidur the features which distinguish organic from inonganic matter. The differgness are not nearly as great as was once supposed. We will begin by eatailoguing the various qualities whith are normally said to characterize living thinge. These are, firstly, constant change $=$ the life process can never stand still; secondly, the transformation of latent energy in the form of fued into apparent energy in the form of work; thirdly, the replacement or repaiti of outworn tissues; fourthly, the absility to react to hostile influences or changes in environment; fifthly, the power of multiplication and growth; and finally, in more advanced titer formes, the capacity for memory and intelligence.

Now it is a signifficant fact that mearly all these qualities are precent abo int nonaliving sulbstunces. The constant chnnge of ald forms of נnatter is a basic assumption of moders plywics, and the behaviour of erystala fullils every other item in the specifiention except prosebly memory and intelligence. These last qualities are not, bownewer, present in primitive foums of life, and earnot therefore be regarded as indispensable to the definition of liwing subatance Rather they ate the outcome of a long procoss of evalution, and represent a complex degres of orgatization, not at fundamental difference in quality.

The dibeulty of Criwing a definite line between living and now-living matter becomes even greater when we begin to explore the strange no-man's-land revealed by the elecetron microscope. The electron mieroscope is an instrument which does not, like the ordinary optieal mierosope, make une of light says. Instead it uses ceathorle rays, replacing a beam of light by a stream of eleetrons, and lenses by clectronuignets. This gives it the advantage of a greatly itureased readwing power, allowing far smaller objects to be studied. The only deadvantage, it such it can be called, ik that os Light waves ate not used the objecta studied by the ejectron microscope cannot be directly observed with the cye, but must first be registered on a photographic plate.

One of the mod intetesting contributions of the electron mictoscope to science is the knowledge it gives us of those minute subatances known as filter-passing viruses, which be on the borderiands of life. Viruses are now known to be responsible for many kinds of diveases in man, amimate, and plants, but their exact nature is still in doubt. Their most extraordinary property is that they belhave at different timea either is andmate or inanimate thingas.
The first discovery of the existence of viruses was made by the Kustian botanist Dmitry Ivatroveky in the early tEgos. He was invettigating a divease of the tobaceo plant which caused a mosaic-like motlling of its leaves. In one of his experiments he passed some of the juice from a discased tobacco plant through a germ filter, thereby producing a
clear liquid that was entirely free of visible germs. But when he reinjected this liquid into a healthy plant it immediately contracted the mosaic disease, thus proving the existence of some minute substance in the liquid whose nature was not known. This substance has since been identified as the robacco mosaic virus.

During the last twenty years or so some extraordinary discoveries have been made about this and many of the other types of viruses. In 1935, for example, the American biochemist W. M. Stanley suceeeded in isolating a sample of pure tobacoo mosaic virus from the juice of an infected plant. To his astonishment he found that the virus was not alive in the ordinary sense of the word, but had all the attributes of a crystalline solid. Its chemical constitution could be analysed and it even formed regular shapes like the crystals of other chemicals such as sale or sugar. In its isolated form it certainly did not possess the power of reproduction so typical of living things; but - and this is the important point - when reintroduced into a healthy tobacco plant after a long period as an inanimate crystal it literally 'came alive', infecting the plant with mossic disease and rapidly multiplying like an ordinary primitive organism.

The analysis of viruses seems therefore a promising line of attack if we are to arrive at an answer to our question 'What is life?' Recent rescarch has, in fact, gone far towards confirming this opinion. It is now known, for example, that viruses are composed of the substances known as proteins, which are the fundamental constituents of all living cells. The cell material itself is called protoplasm; it is the saw material of life, and is built up in different degrees of complexity into all the varied forms of living things. But although proteins are essential to life, and in one sense actually are life, they are themselves strictly chemical entities. Their organization is complex, but the substances of which they are composed, known as amino-acids, are comparatively simple. Many of these amino-acids have actually been synthetically produced in the laboratory.

The implication of these facts is that the condition of
matter which we call "living' does not necestarily belong to an entirely separate mether of nature. Rather it could be egarded as just one of the stages in the growth of more कmplex substaness from simpler ancestore. We nowndays accept without question the evolution of the higher formst of life from the lower, but we somehow resist the idfen that life itself could have ewolved just as logicatly from an eatlier non-living stage. Yet surely there is as greater mentel jump to be made from the mind of a Shakespeare or a Becthoven to a drop of primitive protoplasmic froth, than there is from this ame froth to the strictly cherititl stage preceding it? Science sems to be moving to the imevilable conclusion that "life' must be defined not as a unique and distinct thenomenons, but as a particular degres of organization in the basicic materials of the Universe.

If this is the ctase we can offer a far more beautiful and shtisfying account of the "arigin" of life dhan has hitherto been possible, We can imagine the primitive lifestuff being chemically developed in the shallow water of the firse seat as naturally and incyibably ats the Earth had previously evolved by physical lawa trom a wisp of stellar gas. We cat teel this great process continuing through the long ages of grological time, slowing a lietle here, hurrying a little there, like the different wowements of a great symphony. But always through the warying thythms we shall find the seme intesistible monentum, giving evidence of a force that hat organized the non-liviny into the living, the ingtimetive insto the rnental, and which must even now be driving us forward to new and unimaginable ends.

Of course, it may be satid, this is all very romentic and atrractive, but are thexe any scientifie groctads for believing it to be true? The alswer to this question may pertwaps be clearer when we have considered the picture of evotutionary thatige which this book aims to prosent. Meanwhile, with regard to the first appearance of life on Eath, there is ocrainly good reason to believe that it resulted from some kind of chemical retetion in the oceans.
We have already tried to picture the conditions in early
geological time when the waters began to rup ower the cooling tocks atid collect in hollows to fotm the first seas. These seas, incidentally, would have boen fresh, nof salt, for the satsiness of present-day sch water has resulter from the long accurnulation in the ocean bitsins of sales in solution washed down froms the land by the great rivers. When the first seas wete formed this process had not been iong enough under way to produte any appreciable salinity. There may, howewer, have been carbohydrates dissolved in the sea, formed by the action of the water on earbor comppounds in the Earth's crust ; also the warm moistureladen atmosphere would probably have contaimed such gases as carbon dioxide, clulorine, and niteogen, Under such conditions additional earlohydrates would probnlly have formed, and these, combining with the nitrogen, would bave created the typical compounds Found in amino-acids and proteins. In the final stage a chemical agitator such as phosphorus may have touched off the process that we now call life.

These possibilities are still, of course, highly speculative. The final test will be made if material with the characteristic Life-activity of ordinary protoplasm can be artificially produced in the laboratory. We hawe seen that astep has already been made in this direction with the manutaeture of symthetic amino-acids. And it has been clamed recently from Germany that ocrtain antrino-acids can now be artificially combined to form allbumen, a meogriized protein. The production of synthetic probeins in this way is an task irwolv* ing immense techmical difficulties, hut sientifts are confident that in time all the problems can be overcome. Tr they are proved correct the mystery of life as a pliysical process will be well on the way to solution.

OHAPTER

LIFE'S FAMILY TREE

We must next look briefly at the second tepic raised in the foregoing chapter - the nature and workinge of onganic evolution. No one of an imagitative turn of mind can fail to be imprested by the immense diversity of living things that now intabit the Earth. The size and strength of the elephant, the fragility of the butterfly, the exquisite hues of flowers and birds, the obscure biff-activities of the virus and the mierober -all these arouse in usat perofound sense of wonder. How and why did these creature develop to their poesent forms? Why do they behave as they do, and what speciall role do they fulfil in the intricate pattern of nature?

We must also take into account those mysteriously different Eorms that lived long ago and ate now extinct. The diversity of modern animals is as nothing compared to that multurude of vanished creatures who played the leading roles in the dramas of the past. Their bones silently testify to a prodigality of invention and a vitality of experiment in ways and means of existence that it is quite impossible to grasp.

Iong before the nature of fossits was fully underatond, men were pondering on the diversity of life and trying to fird an explanation of the many problems it posed. Not surprisingly they hit on the simplest solution first ; that the different kinds of animals had been unchonged from the beginning, and that chey had been inclividually moulded from the dust of the Earth by a process of ppecial arcation. This belic! wat common among primitive peoples and was later incorporated in religious systems all over the world. Before the end of the eighteenth century only a handful of thinking men realized that it was an unlikely, and in any caue an inadequate, explamation.

The most incscapable difficulties resulted Irom the researches of the Prench raturalitt Bayon Buwier on the true
significance of fossils. In a world containing only living forms it had att least been possible to believe in the idea of a special creation of all the animals in 4 004 8 -c., and thet they had kept the same appcatanee ever since. This virw was aceepted at the time by science as well as religion, and had even been incorporated ly the great Swedish naturalist Lintateus in a pronouncerment which beeame somewhat pompously known as "the dogrma of the stability of the apecies". This assented categorically that 'the existing species of animpals are now as they were ereated in the beginning".

Cuvicr's fossil bones disrupted this theory completely, As he continued his reyearches, more and more species catme to light that had olvviously had no part in the Biblical creation. Yet in an unaccountable way they did seem to have a family likencss to some kinds of existing animalis. It was almost as if a similar but carlicr creation had taken place, and that every one of its creatures had perished in some appalling and all-engulfing catastrophe, only their bones remaining to tell the tale.

NaIve as this theory may seem to us now, it was the one that Cuwier adopted. But he soon lound that the accumulat inge weight of fossial evidence made it necessary to postulate not one additional creation before that described in the Bible, but three. Each of these trentions, we sald, thust have been similarly brought to an abrupt end by a universal cataclysm. As a resulc of this therory Cuvier had obwionsly to cast arround for a new scale of geolegrical time, lior it was apparente that 6,oporodd yeates was not a sulticient allowance for even one additional creation, let alone thres. Fortunately he forand a new scale ready to his hand ; it was that proposed by his Fellow-countrymun the Conte de Buffon, which we have alrendy dencribed in Clapter 4 . Cuvier must have been delighted to find it of just the length to accommodive comfortably his three additional ereations and che catacysma that brought them to an end.

Concisely stated Cuver"s theory mow amouped to thes. God had ereated the world sometime about Bopoot years ago and peopled it with the anitrials of the first ereation.

These had been moxtly tish and outher sed creatures, and a number of primitive amphiblanas, Alter the first cataclysm a. second ereation had oceureed which had been concentrated mannly on xepeiles. Rut Ged had not regarded this as much more fatisfactory than the first, and, ather a seccond cataclysm, yct a third ereation had beto devoted altrust entifely to the rammals. Finally, a third cataclyan followed by the Biblical creation, had led to the first appearance of man and to the diverse types of plants and animals we know today. These would remain in existence under man's domination until God in his wisdom decided to repeat the process of liquidation.

Almost without realizing it Guvier had established the jedea of the geological eras and paved the way tor the synthestis that was to follow. This was achacved shortly after his death by twe of the greatest men in the history of natural science, the geologist Sir Charles Lyell and the naturalist Charle Darsin. We have already seen how Lyell established the doctrine of uniformitarianism, which stated that, given sufficient time, the ordimary foress of nature would account For every change in landseape since the origin of the Earth. This principle, as Darwin quickly wiw, removed the necesaity for Cuwier's cataclysms iltogether, and puinted the way to a new conception of life and the way it had developed. If the idea of eataclyarss wess simply replaced by ant intinitude of time there wats no reason why living things should not have deweloped by a slow but inceitable process similat to that which had sculpted the surface of the Earth. This hypotheis led to Darwin's classic investigation into the mechanism of evolution, culminating in 1559 int the publication of his Origin of Stecies by Meant of Matral Stertion.

Darwin's work on evalution wat undoubtedly aidec by the theories of several of his predecessors, especially those of Lamarck, who had advanced on ganeral theory of evolution at early ar reqg. This maintained that evolutionary changes took place by a probest known as "the indieritance of acquired charactoristies ${ }^{4}$. For example, the loug necked girafte
evolved from shorter pecked ancestors because the individual girafle, by constant stretching after leaves on tall trees, acquired a slightly longer meck. This was transmitted to its oftepring, and so on down the generations. Unfortunately there is no conclusive cuidence that this kind of inheritance can take place, and it led its followers into the kind of difficulty shown in the earitature on the next page.

Darwin, therefore, was the first to formulate the theory of evolution as a comprebensive doctrine that would withstand scientific investigation and criticistm. The theory itself" is now too well known to need an detailed exposition, but ean briefly be summatimed as follows. All living things on the Farth are members of the stane great family and have developed to greater and greater complexity from the simpler forme of life that have preceded them. Ultimately every ereature must be able to trace back its ancestry to an form of life as simple or simpler than that now represented by the lowliest known organisms. The different species, with their diverse forms, have differentiated through the long aeons of geological time by a prosess known an thatural selection. This prooess deponds on the tact that every individual is slightly different from evecy other individual, even in the same species, and that individuals from time to time tend to produce definite hertable variations (or "frutacions" as they ate technically called) caused by changes in the germ cells giving rise to the next generation. In each gencration in any given areat the individunls whose wariations have best fitted them to their envionment are the ones most likely to rermin. alive and reprodere themselves. Nature can therefore be said to have automatically 'selectod' that type lor survival from atmong ats less well equipped rivals. The process is repeated in each generation, the survival qualities being continutilly selected, the others being discarded. Hut as the qualities selected will wary with each creature's environment, different strains are established, each with itt own particular kind of specialization. It is the difierentiation of these 'selected' strains thet leads to the

 finct crintryun lill

establishment of species, each perfectly adapted for the kind of existence it habitually leads.

Sometimes evolution has gone on at a slow and even pace, while sometimes there have been great outburse of evolutionary activity Iending to as sudden increase in the number of species. This phenomenon, known as 'explosive' evolution, has coincided with the great rhythmic upheavals in the Earth's erust which were described in Chapter [G. It ean be reasonably explained by reference to the great changes in climate and environment that went on at these times, leading to fremzied experiments by nature to produce new types able to addapt therriselves to the altered conditions.

Ofter at such moments a species or group of species would set of up an evolutionary blind alley, specializing on some quality such as extessive size or over-developed armour in the mistaken belief that this would solve its problem of survival. Sometimes, indeed, the new specialization woutd succeed for a time, but eventually the species would die out through changes in the environment and the competstion of ereatures leas morbidly developed in one particular direstion. We shalf meet seweral of these tragic lailures in the pages that follow, and our knowledge of evolution will help to explain how they found themsclves in their unhappy predicament.

The establishment of lifes family tree by the evolutionary preces is now universally recogrized by all reqporsible scitentists. The design of the tece and the lay-out of some of the prineipal branches is shown in the pietute diagram on the following page, Despite the many gaps in the fossil recond which, when they are filled, may lead to slight revisions in the placing of some of the details, the tree on the whole gives dinatecurate picture of the way life has developed. It ternains only to outline the reasons that have proved to us that the theory of evolution must be true.

Some of the mose interecting testimony oomes from the science of comparative anatomy. This is another of the sciences whose development we owe to the great Baron Cuvier, and it has led to many advanees in our kerowledge

 of the diftoment formur of life
of life's farnily relationstips. In the illustration below are drawn for comparison the foretimbs of six quite diflerent kinds of antimals. First there is the amphibious frog t then the turtle, a reptille; next in bied; and finally three contrasted thammals - at but, a dog, and a man. It would perhaps be difficult to imagine six more superficially different structures than the leg of a frog, the paddle of a turtle, the wings of a bird and a bat, the leg of a dog, and the anon of a man. Yet, Jooking below the camoullage of skin and diesh and feather, what do we find? Thet the fundamental skeletad! structure is essentially the same, the differences being entirely thofe of sixe andl proportion in the differemt bowes

These likenesses can prove only one thing - a deep-seated family relationship; they cannot be explained on amy other asumption. "The differences are the result of modifications of a common ancestral stock into diferent specialized forms or life. They were developed through geological time by the process of matural selection.

Comparative anatomy gives us additional evidence of evolution in ies discovery of useless organs and structures in oxisting animals, which in previous times had so essential function. The lost known exurnale is the huraan appendix, which in our ancestors formed a necessary part of the digestive system but in nts has been superseded and seems only to be a souree of" danger. Another of these ' weestigital' structures, as they are technically called, are the muscles of the human ear, which onoe controlled a wide range of movements but now cin hardly be testored to iny functional activity, even by tone practice. There are nearly two humdeed of such useless structures in the humate body, and they
all suggest our descent from at creature which habitually Put thera to pome insportant dunctional use.

Still fur ther evidence for evolution comes from the acience of embryology, which deals with the history of the individual animal before birth. It is now known that the bedies of all living creature are made up of millions of tiny specks of arganized protoplasm known as cells. Yet however tomplicated the body pattern of the ndult animal may be, it has anlwast begun its existence ats a single cell or egg. Moreover, ammals of very different appearance may hive very similay young. For example, worms and shails, and sea urchins and promitive vertebrates, deapite wide variations in the adults, thave marked likenesser at the embryonie stage of their development. These likenesses imply desent from a common ancestor, and are another important proof of the truth of evolation.

The workings of eyolution can be clearly seen in the fossilized remains of animals buried in the rocke, As suceessive layers are examined we can watch the lantagtic pageant of life uncoll. The birth of each group is marked by a few simple, datily adaptable forms ofter ocenpying a fairly limited aren. The next stage sees their inerease and at gradual sperialization into several distinct bypes at they fan out into new and varicd environments. Finally, in many cases, specialization begine to run away with itself, producing bizarse and extrawngant forms like the bone-headed dinosaurs of the lave Merozoie and the giant memmals of the Oligocene. These over-specialized forms, despite a transitory period of surcess, are doomed from the beginining to extinction. They are the side branchers of life's Family tree, born without hope of ever reaching upwalds to the brightness of the future.

It would be out of place here to describe in too much detail the name of the various branches and twigs in the tree of lifit, but a word nutuse be said about the main divisions of its trapls. We should first picture the robts of the tree as begintu'ng in the simple protoplaspmic lie-stulli which was raentioned in the liatt chapter. The first great differentiation

Life's Femily Tree

would then be into the Animal and Vegetable Kingdoms, which constitute the twin pillars of the trunk. From each of these radiate the main branches, which scientists call the "phyla' from the Greek word Jutudont meaning 'race" or "stock'. Fath of these, again, is split into smatler bramehes called "classes", and then into 'orders', "families", and "genera." Finally come the outermost twigs of the tree, which we ktow damiliarly as "kcinds" or "species".

This description of the tree of life will help tes to explan the system of scientifie names which students use to identify different living things. These otten fill the tayman with dismay, but despite theyr length they are really a simplification. The first naturalist to take on systematically Adam's task of naming the animuls and plants was the eghteenth-century Swedish botanist Carl von Lime, susually relerred to as Linnaeus. Berore bis timae uther confusion reigned in classification methods for natural history. Animals liad dilterent names in difterent languages, with the result that no naturalist had the slightest idea which species his foreign collcagues were talking aboput.

To rectify this, Linnaeus introduced what was virtually a system of surnames and Chatistion names for every animal, For the word "cas' he decided to employ ites. Latin equivalent Felit; this we can therefore regard as the surname of the antmal. Then for all the various species of ete he assigned a second Luatin or Greck word. Thus the lion became Felos leo, the leopard Folis pardur, the ordinary howe cat Felis eatur, and so ont. In this wiy acientists know that if they refered to Felis heo their colleagucs all ower the world would always know what they menne, jerespective of the local tramslation of the word 'lion'. The value of this convenient form of scientifie esperanto can easily be seen.

Today the surnames and Christian names established by Linnacus are feefred to respoctively as the "generic' name and the "trivial" mame, the two together as the "specific' name. Similar names are also given to the larger branches or the tree. Theus Pelis leo belongs to the Citmily Felidae, or "eat tribe', of the onder Camporif, or "flesh eaters". This in turn
belongs to the clics Manwadia, or ${ }^{4}$ mammals', of the phylum Vretefralu, or "animals with backbones'. The phylum itself is one of the thirteen great divisions of the Antrual Kingdom which th, together with the Vegetable Kingdon, forms the twotold trunk of the tree of lifer
Many modification have been made to the byatem of clakifitation since the time of Linnaeus, but the principles in which it is constructed are essentially the same. The orderly nanning of the animals and plants has enabled us tor obtain in much cleater picture of the tellationshipse of living things then would otherwise be possible. But life's family tree is not only a conwenient method of pigeon-holing and docketing the varbons kinds of liwing things. It gives us alou at bird's eyc wiew of the whole of evolution and of the parts played by the many different antors in the great dramat of living things. We see chore not only the leading characters the heroes and hecoines and villaing = but also the less dazaling performers: the comice, the charaeter actors, and even the timid litule "extras" who play an insignificant but wital part in dressing the scene. This is the riehly waried cast to whith we must now turn bur attention.

©HAPTPR

THE FIRST ORGANISMS

The first act of the drama of life was played in the coastal waters of the primeval seas against a sombre background of barren rock, deserts, and thundering woleanoes, The Earth's crust had been formed many millions of yeara before, and the highly charged chemical enviromment at the meeting place of land, sea, and air had seen the generation of the first life-sturf in the world. We have allendy tyoken of the viruses, and said that orgentism of this type may have formed the transition stage from inorganie to organie matter. We must now look a litele higher up the scate and see what can be found out about the simplest organisun that traly come within the category "living'.

The earliest characters to enter upon the scene were probably humble arganisme of the natural division known to biologise ${ }^{2}$ the Protista. The term Protista come from the Greek word frolistas, meaning "the very first", and it was introduced by the nineteenth-century German zoologist E. H. Hacckel, to describe lifodorms of the simplest structure, which could not be definitely distinguished as eithet animals or planis. Most of its members consist of onfy one unit, and they are the probable ancestors of every later example of amimal and plant life. But in order to describe more fully what the Protista are like we must first examine the atructure of living mathor and the matin differences between animals nod plants.

The raw material of lite, as we have alfeady said, is known as protoplism. This consiste of a kind of living jelly compoted of proteins, and is the physical batsis of every living body, however large or of whatever shape it may be. But there is no such thitug is a continutous mas of protoplasm: the protoplasmic jelly is always divided up into the tinty microscopic turits known as tells. Each cell is contained by a eell membrane inside whith the protoplasm is divided
into two distinct parts - a central blob, or 'nucleus', and a surrounding body of protoplasm technically known as "cytoplasm'. In the simplest life-forms a single eell of protoplasm develops independently as a free-living unit, but in more complieated creatures the body is built up of many cells, as bricks are used in the construction of a house. Although most cells are of microscopic size each of them can perform all the charaeteristic activities of living things, such as assimilation of food, chemical change, elimination of waste products, and so on.

When we study the free-living, single-celled organisms we find that they are of three main kinds. There are some that behave like animals, some that behave like plants, and others that seem to partake of the qualities of both. The difference between the animal and plant types is based partly on the nature of the membrane surrounding the cell and partly on their method of feeding. Plant cells have comparatively thick membranes made of the carbohydrate cellulose; the walls of animal cells, on the other hand, are much thinner and are usually composed of a layer of fat and protein. Another difference is that plant cells contain the characteristic green pigment known as 'chlorophyll', which enables them to use the sun's energy to combine the chemical elements of soil and atmosphere into food. This process, known technieally as 'photosynthesis', cannot be performed by animal cells, which depend for their food on the work of the plants. The same fundamental reliance of the Animal Kingdom on the Vegetable Kingdom is apparent at every stage of evolution. Plants build up their food with the aid of sunlight from the inorganie substances of the Earth; animals must first take in and break down pre-existing living matter and then rebuild it in the way they need.

The unique charaeteristic of the Protista is that they cannot be definitely assigned to one category or the other. They are intermediate forms, part plant, part animal, and there is good reason to believe, therefore, that they belong to the very roots of the tree of life, before the first great split took place into the Animal and Vegetable Kingdoms. We shall
consider first the most typical example of these primitive, undifferentiated organisms, which are well known to scientists and laymen alike - the bacteria.

The bacteria are the smallest organisms that can be seen with the optical microscope. To many people they represent mainly the unseen causes of disease, and indeed many of the most dreaded discases of men and animals are due to the activities of bacteria. Bacterial action is the cause of such scourges as tuberculosis, typhoid, dysentery, cholera, leprosy, and oriental plague, to name but a few. But to regard bacteria exclusively as malignant influences is to do them an injustice. The vast majority of them are not only the friends of man but are essential in a hundred different ways to the existence of life itself. For example, it is bacteria that preserve the fertility of the soil, without which no form of plant or animal life could survive.

Bacteria in general are of three basic shapes. There is the spherical or 'coccus' shape, the rod-like or 'bacillus' shape, and the spirally twisted 'spirillum'. If a bacterium rod were magnified to the size of a pencil, a man on the same scale would be over twenty miles high, while some of the cocci are so small that over a quarter of a million of them could be placed together on a pin head. All of them are single-celled, and they multiply by dividing in two, a process which in favourable conditions occurs every twenty or thisty minutes. The bacteriologist Felix Lohnis has worked out some interesting figures to show what immense numbers of bacteria this constant division of cells can lead to. Assuming a rate of division of once cvery half-hour, at the end of one hour there would be four cells, at the end of two hours sixteen cells, and at the end of three sixty-four. As time goes on, the figures of the series reach spectacular proportions. After fifteen hours about 1,000 million bacteria will have been produced from a single parent, and in double that period these will have so increased that their bulk will occupy about 4,500 cubic yands, which is about the capacity of a goods train of :00 wagons. Fortunately for us the conditions favouring such a rate of increase occur very seldom in
nabure, and then only for very short periods, so there is litule danger of our being crowded off our planet by the accurnulating legions of bacterin.

The structure of bacteria is more easily studied than that of the still mystericus viruses. They concist, of coarse, of protoplasm, But opinion is divided at to wherher they possess the trie muclews which is typical of most singlemoelled organisms. In some of the larger kinds of bacteria a nucleus has been obecred, bui there je now some doubt as to whether these binds should be clissified as bacteria at all. With the athers the nualeus satras to be feplaced by little granules of nuclear material, technically known as "nucleoproteins": which are evenly distributed throughout the whole organism instead of being conomitrated into a single blob in the middle.

One would hardly expect that ereetures ge minute would have left any fossil record in the tangled Pre-Cambrian tocks of long ago. Yet there is now some fainly conclusive evidence that these creatures did exist at that time. PreCambrian rock formations in Michigan show tracea of tiny dark objects which may well be the remains of jobrt-depositing bacterif clocely yelated to as species still living todiay, Small spherical bodiea lilice those of a manute coccus have also been identified in the great Pre-Cambrith formations of Montana It is strange to think that traces of a creature ao small and fragile could have been clearly prescrved for neatly 5,000 millipn ycars.

Bacterin, as we have seen, belong to that indeterminate region between plants and animals. Dut they are not the only organims to do 30, and angther group, rather mone advanced than the bacteria, is equally fascinating to the bielogite and the Earch historian. The members of the group make up the natural class of the Flagellata, and are characterised by a long whip-like projection of protoplasm known ats a "flagellum". This word is derived from the Iatin verb "to whip", and the flagellates we the flagellum to lash their way through water or other fluids with a jerky but reasonably effective motion.

It would be quite imponsible definitely to assign many of the flagellates to the Animal or Vegetable Kingdoms, Nome possess chlorophytl and can derive their nourishment ditectly From their environmeat by photosynthesis. Orthers have lost their chlorophyll and take in particles of food through their cell membrantes like cypical one-cefiled animals. Several kinds have managed to make the best of looth worlds and can feed either like animinls or plants. An excellent perample of this 访 the little flagellate known as Euglema. In a matural state Euglena feed by photosynthesis and will live quite happily in an open dish well exposed to the light. But if it is placed instead in a mutricnt solution in total darknesu it will

Thute prinaitive organims, Oa the left are fwo paractela; ib phe centre, two amoelia (one in provets of divisicon); on the righta, Eughant
change over to the animinl systern and take in food thoongla jits surlace "skint'.

Enough has now becrisaid to give an idea of the octupants of this natural no-man's-land between plates atid amimals, and we most mext explore the wo great kingdoms that lic on either aide. On one side of the line we shall find the wast and watied world of the Protoplyyta, or "firat plants". Of chese the most important gratup are the Algas, comptising awer i $\mathrm{B}_{2}, 800$ diflerent speciot. They range From the scum of feehwater porids to the great acean seaweds, some of them ower tor tect long. On whe other side of the line are the Protored, of "first animals", comprising such creatures as the lamous amorba of the labomatory and the biology class, and the paramecium, or "slipper animalcule". Ahtide higher up the
scale come the first great phyll of the many-oelled creatuxes, such as the spongres, polypus and moclusae.

Both Amimal and Wegetable Kingdoms will occupy our ateention in the following pages, but the planks, being static and not gifted with the same capacity for mental development eas the animals, will necessarily be of secondary importance to the story. For this renson we shall feserve it summary of their history for a later chapter and pass on here to the two most interesting of the primitive protozoanss the amorba and the parameciufn, both or which are comtuon arimats of today.

The ameda is popularly retearded as the simplest of all organisms, but in fact it shows a great advance on both the bacterin and the flagellates. In comparison with these it is quite a complicated creature and is reasonably speciatlized for its particular way of lite. There are seweral sprecies of amoeba, some measuring halla, millimetre aeross and there[ore being visible to the maked eye; but the commoness form, the freshwater amosba, is ton small to be seen without the tid of a midrowope. It follows the ordinary patem of single-celled ansmals, howing a mucheus surrounded by a mays of cytoplasm. The whole is contained in a thin cell membrane through which it can titke ift watert and food particices.

The amoeba reproduces by dividing its nucleus and cytoplasm into two, the separate parts then becoming a pair of individual amoebas. But if it is artificially divided so that the whele nucleus is contained in only one halfol olde cytoplatim? an interesting difference can be observed, The part containing the nueleus will grow again to its former size and will soon begin to reproduce itsel| by the customary method of eeth diwision, But the other hatif having no nuclews, will be unable to carry out properly the normal inmpeba liferatitivithes. For a little while it will move about without apparent inconvenience, but ewentually it will dic, for it is unable to digest its food, ar grow, or reproduce. This proves the ectential inportance of the nucleus, which apparently acts as* a chemical governor of the whole organism.

The amoeba has no front or back end and can progress in any direction with equal chse. It does this by pushing out in front of it from any part of its body a small blunt projection of cytoplasm known as a pseudopod or "false foot', As part of jits body rates flows Forwand to form the pseudopord the amoeba itself adwances. Then a dew pseudopod is thrown out from an adjacent area and the process is repeated. The animal does not, however, continue for vary long in any one direthion, but is constantly "tacking" wo left and right.

Feeding is cqually simple, minute parliches of andmal and wegetitble matter being surnounded on each side by pesudopords and then incorporaned into the cytoplasm. Here, with the water sutrounding them when they were 'entem', they form a little blob called a 'food vaepuole'. Chernical processes in the amoeba² body are used to digest and anssimilate the contents of the vacuale, which ehen disappears. It would be difficult to devise a simpler or more effective way of living than that practised by these humble microscopie relations of curs.

Compared to the atmeba, the paramecium is and extremely advanced little orgarism. It has a front ond and a back end and a permaneme shape like a slipper, which gives it its populat name of 'slipper animatople'. It catl move much faster than the ampelat for its body is cowered with over 2,000 shart hairs, or 'cilia', which act fike oase to propel it through the water. Feeding is a much more spocialized busituess top, for it has a delinite mopth cavity in its body behind which in a grallet running down into the cytoplasm. Yet despite this comparatively elaborate atructure the paramecium isstill too sinall to be identified with the naked cyen

Unlike the amoetba, the paramecium has not one nateus but two. The smaller of the nuelei seems be be largely onnected with the reproduction processes. Reproduction in the paramecium takes two forms, The لirst is by the oxdinary methorl of tell diwision which can be feen in the amoebs, but the other marks the beginnings of sexudlity.

Thereate no clearly diferentiated males and females among paramedia, so sexual reproduction between individuals of the same strain does not occur. But it eften does take place when groups of individuals of different stains are put together. Each paramecium adlheres to its mate of the complementary straim and they exchange portions of their smal] mulei through their mouth eavities. They then separate and go through a number of divistons, the andwatitage of the method being that tereditary posibillities are transfered from two sources to the new paramecia that result.

The roader may with rewson ask why the arroebsh and paramectum, being modern antimals, have been given so much space in a chapter devoted to the carly history of life. The answer lieg in tha getent rarity of fossil remains in ProCambrian formations, which makes any ditect discussion on these early organisms impossible. Grat owbitops of the rocks themselves ate by momedns uncommon, howewer, and pocuar not only in auch flamoses sites as the Grand Cunyon of Colcrado, where the Colorado Itiver has cut a mile-deep cleft in the plain, but in Africa, Austrolim, Ganada, Scandinawia, Indis, Siberia, South America, and even in Anglescy, in the Torridon sandstones of Sootand, and in the St David's distriet of Carnarvonshire. It is unfortunate that these rocks have been so twisted and altered by Barth presture as to leave no record of any conternporary protozonns, but we can reasomably assume that creatures wery similar to the amocba and parametium daty have lived in Pre-Cambrian timens. This gucas is supported by the fact that such simple and emmparatively unspecialized creatures tend bo survive almost unaltered for many millions of years. It is usually the highly specialized types that perish and are suptrseded.

Although they are modern typer of animals, the amoeba and paramecium may therefore be regarded as excellent understudies to fill in a gap in the fossil recond. They demonsurate the first tentaniwe specializations of living things - the transition to more complicated methods of feeding and locornotion, the creation of a stable bodily struebure, and the
growth of sexual activity from primitive division within the wnit cell. We are now free to go on to the more highly evalved species of early life - species which have left actual foszil remains to speak in the incomplete but moving language of tombstone epitapht, or ancient and faded parish registers, of their life and death in the Palaeozoic seas.

CHAPTER 10

THE AGE OF INVERTEBRATES

Before the Cambrian Period little is known about the geography or climate of the Earth. The first seas were probably shallow and widespread, and we can tell from the scarred surface of many of the rocks that on at least two occasions ice sheets and glaciers advanced from the poles towards the equator. Otherwise we know nothing, for the rock record has been badly distorted by time and Earth-pressure, and there are no proper index fossils to aid us in our speculations.

But with the opening of the Cambrian Period, which occurred about 520 million years ago, we find that the story becomes much better documented. Our main sources of information are the varied fossil remains that now begin to appear in increasing numbers. The most likely cause of this sudden appearance of fossils after 1,000 million years of an almost completely blank record is that a great many creatures existing at that time began to develop a skeleton or shell, enabling their remains for the first time to be clearly preserved and studied. As a result a sudden flood of light was thrown on the primeval scene. It was as if a curtain had been miraculously lifted to reveal the progress of a drama that had hitherto been hidden from our gaze.
Although it seems probable that the vast majority of Cambrian animals possessed shells, or some form of solid structure, they all belonged to the great natural division of the Invertebrata, or 'animals without backbones'. In fact this Period, with the following Ordovician Period, is popularly known as the Age of Invertebrates. It lasted for about 200 million ycars and saw the domination of the Earth by creatures that now occupy an extremely lowly place in the natural scheme. Life, moreover, was still entirely restricted to the water. The continents, with their high mountains and dusty plains, were barren and deserted, without a tree or a bush, or even a blade of grass. Only an occasional patch of
moss or lichere on the inter-tidal rocks broke the monotony of this sombre and Forbidding scent.

Before destribiog the invertebrates themselver we most first explain how the new abundanoe of fogsils hata enabled us to Jearn about the distribution of land and sea in those distant tirne. The map on the following page shows the latest conception we have of Cambrian geography. It is known as a palacegeographical map, and is built up by noting where fossils of Cambrian age occur. These areas must at the tirne have been covered by sea water, tor there were no land animats to heave their imprint om the rocks. The otber areas, where no fodsits oftur, must have been compored of dry land. In dater times, when life began to invade the land, the obvious differcnees between land and sea fossila indicate the broad outlines of Earth geography in a similar way. Land fossils can even be used as clucs to more detailed knowledge. For instance, the discovery of similar lind fossils in areas now tepenented by water suggests that there may once bave been a strip of land to connect uthem. Conversely, widely different Cossils in adjacent artets may indicate the former prebence of some local barter such as is mountain xange or sea-covered straits.

We can see at once from the palacogeographical map how wery different was the geography of the Cambrian Periced from that of the Earth today. Asia way alrnost completely submerged under two vast oceans known respeceively ${ }^{\circ}$ Proseidom and the Redlichis Sea; about half of the United States and more than half of Australia were under water; and ant enormous southern continent kenown as Gundwanaland extended from westorn South Aruerica to Australia, cmbracing the whole of what are now the South Atlantic and Indlan Oceans. The extat definition of these ancient coastlines in theas now coyted by the seat is of counse impossible, mainly beperuse we have little of no knowtedge of the fossils that lie buried under the prestat ocean floors; but the coastines marked over present-day land areatare at authertic as painstaking restarch en make them.

In addition to the help thoy give ur in palacogeography,

rosesily cantell us a great deal about the elimakes provailing in theae aneient lands. The types of shentures found give an elue to the kind of enwsomment that they would uarnidly neod whildo itheir ctixtribution often showra whother condiotons in differmat parts of the woild were equable of extrema. Thus reter of Cambrian "cortaline sponges", whith wete amirnals requiring Pairly watm waters, atre bund in fomilixed form in suth remotely separated arcas an Grocaland, Moroccis; aud the Antaretic contiment. Thes saggets that the Cumbrian clinate was probably Ehirly warm and that there were mor grent extremes of ternperacure betworn the tropion and the pales. Bimilas methods man be used lor deducing the probable charate in all the geological Periode down to the presene day.

But we mitht now reftrm froth this excursion jutio palaeor yacgrajiluy and look at some of the lousil creatures of the Age of Inverteboites. Wy che begiming of the Gambrian Period all the main natural grosipg of invertebrates bad already deweloped frome the primperive kinds of organisms described iu the previons chapter. "There are twelve of the groups its all, comprising etrery divition of the Aninalal Kingdons excopt of course, the buchboned arimaly. These lasi, like all star Performery, were ta reserve their entranec for allatisome:

The first gropp of invertebration is represented by the microscopic ureatures kotom as Radiolaria and Fondmuntlera. Both these liclong to afe natural phylum of the Protptom, bate, unlike the protozonase already described, many of them possessod tiny shells of siliceour or calcureous material. The newt group is the forifera, or eponges, which contairt same of the most primitive kinds or mathy'celled eceatures. Theni come the Boclenterata, tepresented enpecially by the
 [rom their resemblance co a Roman Inrop]; the Erbino

 the "rustacern "多hell fish", insect* and spiders ${ }_{5}$ and the Modlusca, or true shell fish, itneluding the bysters, suajlg, and squids, and ehe two fandors extinct groups known an the namonites and belemaites, Finally eome four phyla at

Yermes, or wormbs, and in rather neglected litue phyhum called the Bryoroa, or "moss animals", whose modern representatives are sometimes mistaken by seatide visitors for tenweds.

In the short space at our dispossl it is impossible to diecuss this wast assemblage of animuls in apyeding lilice adequate detail. Morcover, some of the groups were not wery strongly represented in early Palacozoic times. We shall therefore restriet ourselwes to a fow of the most interesing members of? each group, beginning with the microscopic Foraminilera

Radiolaria and Feraminilera
and Radiolaria, There in a wht number of tpecics of these tiny peotosoans, and they have persisted from the end of the Gambrian period to the present day. At some periods in the Earth's history their remaires love lyen formed into great layers of aclid rock, which have later been upraised from the
 of Doyer are partly composet of the thells of foramintters and wher marine protozoans measuring leza than one millimetre in dFameter.

Foraminifers start thetr life as a blob of priptoplasm, rather like the ampeba we have alcendy dercribed. Unalike the anombat, Fuwerer, they then begin to secrete a shell. Thes shell iv composed of the chalky substance known as ealcium
carbonate, which the foraminifer extracts form the sea water. The shells themselwes vary a great deal in shape and texture. Some kinds of foraminitery are content with a single chatnber, but others have several, commonnicating with eath other by openings between them. The animal oterpies all the chambers and also has the power of creating new ones This it does by pushing a masts of protoplasm throught the opening of the shell and secreting a new wall. The chambers can be arranged in any form - straight, curved, cociled, or spically iwisted.
No one knows the real retson why foraminilents, br any other shelled animals, first created shells for themedves. Some authorities belieye that it was as a sevulc of increassing comperition, the sheil forming some meature of protection against predatory foes. Otheres say that the growth of athelf jo primarily a chemical process and one oyer which the animal has no control. In ather words, the ealcium in the water was automatically absorbed into the animal's lody when it fed and was then excreted with the other waste producta. The amount that adhered te thes surface or drifted away depended entirely on the animal's chemical workings. so that a shell might be formed whether ite owner wanted it of mot. Whatever the truth of these theories, it is certaimily fortunate that so many early invertebrates stereted these shells, for otherwise there wauld be no fossil remains to tell us what their occupants were like.

The word horaminifer means "hole bearer" and is derived from the small holes, of pores, in the forarnitifert's shell. The animal projocts long thin streams of protoplasm through these hoies, which writhe about and form getworks to ceapture and digest food. These streants of protoptasm are the equivalent of the a moeba's pseadopod and ate likewise uscd to help theit owner mowe about.
Foraminiters havecexisted in wast turnbers in the acns since the end of the Cambrian Period. Most of them live deep down on the beean floor, buta few foat at or mear the surface. One of the most common kinds, known as Clodigerinta, is a surffice dweller, and the mytinds of these tiny foraminificrs
that die fall in a *low and never-ending rain to the ocean bed. Here, through long ages, they have collected in drifts which are known as the "globigerina oose", This accumuJates at the rate of about two feet every hundred years and occupies ncarly an third of the world's ocean floos - an area of over 40 million square miles.

Radiolaria are similar to Fotaminifera in being protozoars of ath ambeboid type. Instead of shells, however, they gemerally have elaborate external skeletons of great delicacy and beanty, often with long spiny projections that give them the appearanec of decorations on a Christonas tree. The skeletons are mostly composect of tillida which, tike the foraminifer"s calcium carbonate, is extrated from the waters of the sea. They often form the raw material of geological formations, and many rock layers From all ago in the Earth's history are composed of the skeletons of Radiolitrin. Some kinds of Radiolaria live doep in the oceans but the majority prefer the surfate waters. Like Globigerixa, they are responsible for a rain of shelly which collect on the octan floots as a "radiolatian ooze". This ooze ocecupies g miltion square miles of the sea bed in the Pacific and Indian Oceams.

One unexpected use of these tiny sea creatures, particularly the Foraminifera, is to help human beinga in the search for bill. This is because theit fosill remains, being so mumerous and widely distributed ${ }^{\text {are }}$ an excellent guide to the identification of rock layers where oil may be found. Samples taken from the borings at differepat lovels are handed over to palaeontological spacialists to identify any mideroscopic Eossils they may contain, Foraminifers $=$ or 'forams' as they are colloquially termed - are often present, and by identifying the inacecsible tock formations below, help the eperators to decide whether their prospecting is likely to sueceed ate that particular spot.

Noxt in this brief revicw of the Pallasozoic invertebratea a word must be said about the Porifera, orsponges. These have been common Erom early Cianbrian times right down to the prent day. They are important bectuse they represent one of the first intances of a large number of single cells being
assembled together as one large organism, with different parts specialized for different functions. Thus in a sponge only certain of the cells absorb Food: they then pasa on some of the food to other cells specializing in protection, reproduetion, or supporting the animals body. The appenance of the spouges therefore manks the end of unlimited frece enterprise for the indiwidual cell, and the begioming of a social ofgarization.

For many yeara controwersy reged ta to whether sponges were teatly animals or plants. This was because they were static and did not seem to reate in any obvious way to their enviromment. It was thought that if they were animals they would poses the usual animal power of locomotions, enabling them to move about and setrech for their Food. The miystery hats now been solved, however, for it has been found that sponge have no need to sotk their prey; they arrange that if should automatically be brought there. This is achieved by a mochanism of whipelike flagella intide the sponge, which draw scroans of water into it through the pares in its watls, and then ejoct them through one end. The sponge is therefore a kind of lividg filter, constamely absorbing its food from the eurrents of water that it duse to pass through its body.
The next important group is the Colenterata, comprising in addition to the fypical jelly-rish such creatures as corals and sea huemones. The word means "hollow inside., for none of the coclemterates have any spocialized internal ongans. The jelly-fish and sea anemones, being entirely softbodied, were not good sabjects for fossilisation, but there ate plenty of remains of corals, and also of the strange horny covered createret known as graptolites, which were especially common at the time but are now extinct.

The name "grajublile' comes from two Greek words: graptor, written, and tithotr, atsone. It was given to the arimad because fossil graptolites ate usually found pressed flat in beds of shale, their hard parts appearing iike a pencil or charcoal tracing on the rock. The brauching 'arms' of the graptolite were made of chitin, a material toot unlike that
composing human fingernails, and they were otten secrated along one or both edge like a saw. Inside each serration wat a cup of chamber occupied by a ciny tentacled creature known as a polyp. Each graptolite was therefore really a odony rather than as single individual, and secreted its chitinous covering through the combined efforts of all the polyps in the groutp, The wholle colony either floated in the water attached to a piece of seaweed, or anchored itself to the bottorn, or to rocks; some species may even have suspended themselves by a kind of home-made gas-rjilled float.

The corals were built on a similar plan to the graptolites but have speceeded in surviving to the present day. The coral polyps secrete protective sups of limestone, and in some species increate by budding until they have built up massive brancling skeletons. It is these skeletons that form the great coral rects of the tropie seas, and have been upraised in a fossil state to make such fampus geological formations at the Wenlock limestone of Shropshire Several kinds of corals existed as carly as the Gambrian and Ordovician Periods, but they had their heyday in the succeeding silurian Period, when they could be found in fantastic profusion in atll the ocears of the world.

Compared to the Coelenterata, the Brachiopoda are an unspectacular phylurn chiefly of interest to the specialist. They ate a. group of small marrine animals with a double hinged shell that seldom measures more than an inch or two acrosg. The fossil memains of brachiopods are extremely cormon in early geological formations and, compared to graptolites and corals, they show a great ewolutionary advance, Small as they are, they have a specialized digestive and mervous system, kidneys, reproductive organz, and strong museles. They were a very persistent and successtul race, more than soo kinds of brachiopods being still alive. The primitive brachioped Lingula which lives today on the shores of Japan, Quecrsland, and the Eust Indies can claim to be one of the oldest 'living fossils' in the world. It eremains are commonly found in the Ordovician rocks of 400 million years iggo.

Little can be said about the four phyda of wormu which existed in Palaeozoic times, for they have lefi very few fousil remaing. All the worms are known principally from their fossil tracks, which onn in some crises be astigned to PreCambrian rocks; but it is usually quite impowible to say what species of worm was responsible for the cyidence. The matin exception is a kind ormarine bristle worm that lived in the Ordovician and secreted itself a calcarcous dwelling in the form of a tube. These tube-dwellings have been pre*erved and ate often found attivched in clusters to the shalls of brachiopods.

All three of the remaining phyla of invertebrates are important; these are the Echinodermatin, the Mollusen, and the Arthropeda. The word Echinodermata mesns' "ereatures with spiny skins' and the group inctudes such familiar sta andmals as the starfish of the tidal rock poote and the sea urckirt = now as well known to connoisecurs of fish-food as it is to biologista. Butt the characteristic echinoderm of the Age of Invertebrates was the crinoid, or "seat tily". Sea lifies fooked more like planta than animals, being elearly divided into an stem, a body, and a number of branehing asma like the petals of fa flower. The profusion of crindids itt the Silutian Period has enused it to be termed the "Age of Sea Lilin', and the gorgeous coloury of many of the different species must have gived the sea floor the aspect offan underwater flower garden.

The Motlusca, or true shell fish, are a group that thave the honour of posscsaing the largest creature of the Palacozote world. This was the Ordowician cephalopod known as Eindoerat piroffeforme, whase sheill exceeded fifteen feet in length and ten inches at its greatest diameter. The word cephaloped mears "head-foot" and is siven to this branch of the molluscs lecause of the tentacles surrownding the mouth, which appear like a bunch of limbso or 'feat'.

Of the molluses, and in fact of all the invertebrates, the ceplatopods alone have proved themselves able to survive in direct competition with the great vetebrate animats of the sent. Their vitality and ageressiveness mssured them of an
evolutionary success that was denied to their more sluggish relations. Their best known living representative, the giant squid, is the greatest invertebrate animal of all time; but even the smaller members of the group have shown themselves well able to hold their own in the battle for survival in the seas.

But not all the cephalopods have enjoyed this success, and two of the kinds most common in prehistoric times are now extinct. These are the ammonites and belemnites which, although they belong to a much later period than the Age of Invertebrates, will be considered here to complete our picture of the famous shell fish of the past. They reached their peak in the Mesozoic Era, when they appeared in fantastic variety and profusion. Their fossilized shells can be picked up by the dozen on the shore at such places as Lyme Regis in Dorset and Whitby in Yorkshire, where there are ouscrops of the shale beds known as the Blue Lias. At Lyme Regis the fossil ammonites are so easy to come by that the smaller and more graceful examples are mounted in rings and sold to tourists as souvenirs. The belemnites are shaped like miniature projectiles and are sometimes mistaken by the uninitiated for thunderbolts; in fact their very name comes from the Greek word for a dart.

Nothing is known about the soft parts of the ammonites, but a certain amount can be deduced from their living relative, the pearly nautilus. This creature lives in the coastal waters of the Pacific and Indian Oceans and has a large coiled shell measuring up to eight inches across. The shell is divided into a series of chambers, each one slightly larger than the last. These are added one by one to a single original chamber as the animal increases in size. The nautilus itself always occupies the last and largest of the series, walling up each old chamber behind it as it moves to increasingly commodious quarters. A similar procedure was doubtess adopted by the ammonites, but not all their architectural creations adopted the same coiled form as the pearly nautilus. Some species of ammonites built their chambered shells in a straight or gently curving line; others even made them elab-
orately spiralled. Beat whatever the shapg of the completed shell, the method of buidding it was very much the sume.

Although both ammonites and belemites have really trefpassed into this chapter from a later period, there is no doubt that the two types of animals which we must now consider ate probably the most typical of all the seateratures of the Age of Invertebrates. These ance the trilobites and eurypterids, both members of the great plyylum of the Arthropoda, or "creatures with jointed tect". This is the group which later gave rise to the land insecte and spideres and such creatures as the lobsters, centipedes, and scorpions.

During the long millennia of the early Palacozoie the trilobites were the rulers of the Earth. Thay domenated the natural scene with the same suceess as was later achieved by the great reptiles, and in now enjayed loy mint hatnself. But like the reptiles alter thers, they went in time down the bleak highway to extimetion, so that now for more than soo million years there has been no living survivor of this once powerful race. Fortunately, howewer, there are abundant Possils to give us evidence of their way of life.

In size and appearance the trilobites could hardly be regarded as well cast as weyerlords of the Earth. They looked rather like outize woodlice, but seldom exceerded an inch or two in length. The Jargest known species maabured two feet, but this was it quite exceptional and uncommon form. The name trilobite is derived from the fact that the upper surface of the creature'y body, which was covered in th chitinoun shell, was divided into three distinct parts or "lobes' by a pair of eldarly marked furrows running from fiont bo back. The body was alse divided into theee in the ather direction, there being a strong shield fore and aftr, connteted by a middle gection known as the thorax. This middle section was divided into segrenters which would mowe atganist one another, enabling the trilobite to roll itself into a ball. This was a most necessary device, for the underside of the body was quite unprotected from posible foes.

Two of the most intereting features of the trillohiten were their eyts and their legs. The ço were often raised and
sometimes actually stood right out on stalks, while many speces had compoutud eyes with as many as 15,000 different lenses. The legs ran right down the underside of the bodys two to cach segment, and there were sornctimes over two dozen of such paist. Each leg was divided into two parts, one for swimming and the other for walking, and at number of spines projecting from their inner sidere entbled them to be used as jaws. Exvernal jaws of theis kind ate quite common dinong the lower animals, and the trilobite fed by crouching on top of its prey, masticating it with its leggs, and passing each morect forward io its mouth.

It is not definitely known what kind of food trilobites ate, and it probably varied from one species to another. Some may hawe been exclutively predatory, while others probably lived on seaweeds, or scavenged for decaying vegetable matter and carrion. A few kinds are known to haye been adapted entirely to a burcowing life, losing the use of their eyes and subsiting on food extrated from the mud of the sea floor.

The vast numbers of fossil trilobites foumd in the Palaeozoic rects are oten beautifully marked and preserved. In former times, belore they were scientifitally identified, they were known as petrified butterflie and were much in demund at curios. In some areas of Britain where they are commonly found the quarrymon reler to them as Jocusts. The hard shells of the trilobites have probably enabled a greater portion of them to survive as fossila than of many of their eontemperaeics, but even so they were undoubtedly the most common and suecessful representatives of Palacoyoic life.

The dopest rivals of the trilobies were another race of ${ }^{2}$ creature distantly related to them. These were the eurypterids, or sea scorpions, which produced the largest kinds of fossil arthropods in the world, some of which meatured ninc Feet long. The word eurypterid means "broad-finned', fond the oar-libe limbg of the curypterids seem to have begn well sutited to swimming. Only one species had a tail that could be used atall eficiently as a rudder, so the eurypterids must
have steared themselwes like sculleri by warying the pressure applied by their oar-like limbs to the water. Their anabony also suggests that they may have swun upside down.

The size, elaborate structure, and great age of the enary pterids make then exceptionally exciting gane for the palacontologist. It would be fair to shy that among fowin invertebrates fow other reathure can Be such a thrilling reward to a successfiul search. There 发something infinitely moving in uncovering the fantastie sketom of one of these great sea scorpong that has been entembed in the Farth's crust for over goo million years, An evocation of this feeling, and of the emotions utsuctiated with all palarentological reaearch, is given in a pastage from the Norwegian palacontologist, Professor Johan Kiace, writhen adter the first discowny of the curypterid known as Mextererie in the Upper Silutian sandstone neat Oslo:
'I shall never forget the motnent when the first exeellently" preserwed specimen ol itbe new giant euryptaid was found. My workmen bad lifted up a [arge slab, and when they turned it ower, we suddenly saw the huge amatmal, with its maryellously shaped feet, stecteled out in natural position. There was somethint so lifg-like about it, glearning darkly in the atone, that we almost expected to see it slowly rise from the bed where it had rested in peace for milliong of years and erawl down to the lake that glittered close below us. ${ }^{3}$

Like the trillobites, the eurypterids falled to survive beyond the cend of the Pralacoroie Era. The reasons for thiv are not definitely known, but it serems likely that none of these great inverecbrater of the past was able to compete with the new bactboned animals that were shorty to appear ant the stene. The Palabogric invertebrates liad comanited themselves too flar to a particular luad of specialization, and when their eircumstances changed they were unable to adapt. The future of their line was left to their bumbler and more intignificant rclations, and the main stream of Earth hitoty was entrusted henceforward to a new and more versaride group of performers.

MHAPTER 1I

ANIMALS WITH BACKBONES

The main outline of our story has now brought us to the raiddle of the Silurian Pertod, about 33 m mililion years ago. So fur we have met only primitive microscopic organisms and invertebrates - creatures which despite their variety and interest will henceforward play a very much less prominent role in the story of life. The actors with whom we shall now be" concerned are the wortebrates or 'animals with backbones'" who firse appear in large rumbera at the end of the Silurian Period, establishing a supremacy which they have ever sinec majntained.

The Silurian Period, as we hawe said, is named wher the ancient Welsh tribe of the Silares who onee occupiod the area where rooks of this age were first investigated. The man who first studind these reeks, and described some of the earliest wertebrate foxsils, was a young nineteenth-century Soottish geologist who later bebime Cannus ats Sir Roderick Itnpey Murchison. Murchison was a seldier and served through the Neppoloonic wars before retiring to his Scottish estates as a gentleman of leisure. It was not until he was thirtyotwo that some chance tallss with the great British scientist, Sir Humphry Davy, inspired him to acquire a self-made education in geology. The onteome of this was his book Tha Sidurian Syutm, published in $1 \mathbb{B}_{3} \mathrm{~B}_{3}$, which quickly became a geological classic, Murchison was awarded a knighthood and later became Director of the Geological Sutvey of Grat Britain - an astonishing record for a selftaught amateur who knew nothing of geology until he was in his early thistites.

Before decribing the ently wertebrates from Murchison's Silurian rocks, a word or two must be said about the general development of the backboned animals and their significance in the scheme of later life. Today, everywhere we look, we see the vaniety and importance of the vertebrates. Man
himelf is a vertebrate, and so are hit domeatic animats, the quarry he hunts, and mest of the creatures he wits for food. Although outnumbered by the invertebrates by many huridreds to one, the backboned animals have undoubtedly buccecded in dominating the Earth.

To understand the reasons for their supremaiky we must remember the owerwhebming advantige that vertcbeates have in the batte for life. To begin with they possess a strong but lexible internal gkeleton, allowing for grealer Hecedom of mowement than the cumbersome exterial yhells of the invertebrates. Secondly, the ewolution of the characteristic vertebrate skull prowides ample space and protection for at well-developed brain, while the loabkbone itself forms a strong defensive sheath for the nerve cord controlling the antimal's movements. Thirdly, the pairing of such important organe adeled, lungs, kidncys, and so on prowides a valuable second line of defence in case of damage of disense. Findilly, the grouping of the main tense organs at the front of the head, and the specialization of the limbs and foody for loepmotion, makes the vertebrate machine altogether more nimble, efficient, and "aware" than the geterally more shoggish and sutuic invertebrates.

Previously, tor the sake of simplicity, we have regarded the vertebrates 解 the thirteenth and last great division of the Animal Kingdom. Zoologically speaking. Howewer, this classification is incortect. The vertebraters belong, with a handful of other creatures, bo a phylum known as the thopdath, or animals with " notechords'. The notochetd, or 'back string', has great significance in vertebrate evolution, being the earliets evidence in the history of life of"am embryonic backbone. It consists of a long shim rod of gyintly material enelosed in a bough sheath and running from head to tail of the mose primitive members of the phylum Chordata. Bxcept in the creature known as Jompday from the Silutian, it has not been preserved in fossil form, so we cannet give satisfactory examples from the past to show what it is like. But it can be described by analogy, for it is the main support of the bory in the modern tunicater or sean squitro the
primitive noorn worms, and abowe all in the creature known to biologisce ass Amphimant, the lanoelet.

Amofioxas is foind somewhat rately in all the shatlow tropical sest of the world. Rut it is extremely common along the coast of the South ©thina Sea, efpecially in the Amory dietrict of the Formoss Straits, where it is collected by the Chinese and sold in latege quantities for foot. The narne Annphiaxur means "sharp at both ends' and the cieature is shaped like 2 small, flatienced, and semi-ransparent cigar. Compared to an ordinary fish it is an wery primitive animal Indeed. It has no proper fins, nō lirobs, no jaws, mo sketetom, no etres, no ryes (although it may have a general sensitivity to light, and nothing that can properly be called a brain. It mover alout by somewhat cude undulations of the body,

but spends much of ite time partly buried in the sand with prly hits fore part protroding. It Peds in thes position by sucking a stream of water into ito mouth, from which it straitn out microxeopie organisms.

Defpite this primitive charater Amphotw is definitely related to the vertebrates. It has a firm but Mexible notechord which not only supports the soft parte of the body but provides at atrong axis on which the mascles oan pall. A Eypical vertebrate nerve oord runs along the animal's back behind the pofochard - not, at in the invertebrates, along the underside. Amphown also posesses the fillilike gill slits which, at a highee Jevel of cookstom, enable aquatic
 In Ahehtax these are mainly wrod ans a strainer for food particles

The notochord, as seeti in Amphoturs, is undoubtedy the
fordrunner of the typical buekbone of all the higher animats. As evolution pregressed this 'back string' became surrounded and fitally replaced by the wertebral column, the transitional stage beimg well represented by the modorn eetlike creatures known as lampircys, Lamproys are jawless vertebrates who feed by fixing themselwa to the bodies of hightr fish and sucking their feesh, lut deapite their primitive character they poses not only a notochoed but the beginninges of a rudimentary vertebral ofdumn. Lampreys are more likely to be degenerate vertebrates than a direct link in the evolutionary chain, lyut they are neverthedess a valuable clue to what out earliest vertebrate peodecesory may have been like.

As the baekbone invested the rudimentary notochoed it Combined also with the nerve chord which in erentures like Anphitowie ran directly above it. In this way was built up the typical backbone of the higher animate, with its individual bones, or "vertebrate", its bony projections, ar "spines", which dan be easily felt on the backbone of a human being, and the hollow tube or 'neural eanall ${ }^{\text {t }}$ which runs thirough all the vertebrae and contains the main merve oord. Evidenece of this process can be found in spectacular form in the science of embryology. We find there that every vertmbate entbrya, including that of man, bergins life with a notochord and gradually goes through all the evolutionary stager dataribed above. We cin suarcely need further prool that backboncs evolved from notochords and that mankind, in commot with the ofluer vertebrates, must at some period in the remote past have shnred a conmon ancestor with the ses squirt, the pancelet, and the lamprey.

One important problern still remains to be solved, howr ever. What wast the origin of the first creature to possets at notochord? It, as it is necessary to suppose, it arose from one of the gacat invertebrate groups, which group can claim the honour, doubtrul as this may sometimes seem, of hawing given rise to the whole vertebrate phylum, including the human race? Except for the Mollusea, which have newer been seriously considered for this tole, scientists hawe at
difterent tames ascribed our origin to overy other invertebrate group. The most popular choice has been the comenterate, or jelly-fish, ind this in a sense is underiably correct. In fact it seems tikely from the anatomieal eridence thint the coelenterates have given rise to every other form of life except the fonges. Bep between the coelenterates and the vertebrates is it not possible that some more advanced invertcbrate grosp Forms in ancestral misaing link, or th at least wery clesely commected to the wertebrate stemi? For same time this nole was assigned to the anmellids, one of the fout plyla of worms mentioned in the previous chapter. It was soon reslized, however, that to astume that such creatures could evolve a notochord and gill shits would raist more problerns than it solved, Another popular choice was the Artiropoda, enpecially that branch which geve rise to the water scorpions and spiders. But this also had to ber stban= doned when it was reallied that the atthropod's nerye cord was in a poostion quite inconsistent with wertelbrate kinshipFinally scientiste tumed to what secmed on the lace of it to be the most unlikely of all the phyla, the Eechionodermatin, containing the starlished and sea urchins. Strangely enough this choice is now generally acepted as orrect. Although the adult echinoderms are radically different from vertebeates in every way, their larvae show many points of similarity. This sugmests that at somed distant period in geological tane the echinoderms and the vertebrates may have had a common ancestor. If thes is so, then the humble sturfishes and sea urchins are our nearest invertebrate cousins - 2 fact that cannot fail to stimulate in us a number of salutary reflections.

Bu* we mist now return from this account of vertebrafe ancestry to the ancient silprian rorks where the firat wertehate fossils were found. The Stlurian appars to theve been a comparatively mild and agreenble period to live in. Thre climate was cquable and the widespread presence of coral reeti sugesest that the seas were warm and ghallow, As the Period advanced, however, aridity increased, and the seas retrented to leave great deprosite of sale. In the United States
especially these Silurian salt deposita tre even now very much in cuidence, producing in a good year nearly 3,000 million tons of'salt, valued at no million dollars. Europe during the Siluriant wats an erea of mountain building, and saw especially the formation of a great range, known as the Caledonian Chesin, which ran from Ircland to ljeyond the northernmest tip of Seandinavia, Much of Seotland and the north-west const of Norway is still composed of tite recke of this Chain, but the middle section has subsided below the North Seit.

In the surwiving otibrops of the Caldonian Chain we find the carliest important fossil remains of our vertebrate kingmen. The only verbebrate fossils to antedate them are some bone fragments from Colorado, suspected as ljelonging to the late Ordovician Period lyst too impertect to be certaing identified. The pioncerre of fossill discowery at the British end of the Chain were Sir Rodencle Munchison, and his contemporary, the Sootish bank clerk and stone mason Hugh Miller, who achieved great dietimetion the geologist and man of letters. On the Scandinavian side the most tmportant Silurian remains were those found near Osfo in Norway in sgog and fully reported in 1924 by the Norwegian palaeontologist Profespor Johan Kiner.

These first vertebrate fosile to be found in the Britesh and Norwegite mountains were of course entitely of aquatic animals, and especially of the fantastic primitiwe fish known as ostracoderms which were to play such a prominent role in middle Patacozac life, Ostracoderm literally mearv 'shel]skismed ${ }^{3}$, and the otstododerms were laspely protected by strong bony armour, which has led to many different varjeties being well preserwed as fossits, But intermally, like our modera lamprefs, they lacked any kind of bony skeletonThey had no jasses, and their mouth consisted of a small hole or crosswite slit. Many of them had only one nosuril set high up on top of the hesad, and they were without the typical paired limbe or fins of the teue fishes. Their amour covered the whole of the fore part of their bodies, leaving only their tails and the himed part of their trunke frece co provide the
mutive power for swirtming. The arrmour itell wat oflen fintastically shaped, with a palt of xearyard-pointing bony projections or horm, which added to the ostracoderms? grotesque appearance.

The group is usually divided into three matural onderg. The oldest is that known as the Fteraspida, or Helerostraci, which includes in the famous astracodenn Pleraptis one of the most grotcowne creatures of this or any other period. It had an extremely complex syatem of armour platine and its eyes were set wide apart at the very forat extremities of the head. The fore part of its body was very much llattened as if it had been artificially compresed, and, like all ostracoderms, it seents to have lived in freshwater lakes and streams, grubbing alout in the mud at the bottom in spareth of food.

The second of our three orders, the Gephalaspida, is named efter the catracoderm kmown as Cefhalappis, of "shield head ", to tralled becruse of the massive protective plate of bone that covered the fore pert of its Eody. Its fossil remains arte commonly found in the late Silutian rocks, and its appeatanos was compared by Hugh Miller to a taddler's cutting knife "with a crescente-shaped blade, and the handle fixed transwarsly in the centre of its coneswe side ". Cephalaspis wes a father larger estracoderm than Perruphil, but its fattened shape and the fact that its cyes were set in the top of its head tuggests that it was likewise a bottorn dweller. Some authorities believe that it had the prower of repelling its Foes by a self-generated clectric shock, tike the modern catfish and electric eel.

The rnud-grubbing habice of the ostracoderms of these
two groups docs not suggest that they were a particularly active of enterprising lot. With the third order, however, known as the Anaspida, we meet a rate of smaller and lems heavily ammoured ercatura who may have ventured awny from the bottom into the operi waters abowe. There is evildence for this in their rounded shape and in the placing of the moputh at the foont of the head instead of underneath?, In fact with Birlnita, a typical member of the group, we have a creature who despite the bizarse ridge of hard spines tulong its back looks not wo wery unlike some of the common fishes in the sea todiay.

None of these stratige creature survived the Devonian Period, which carme to an and about a 95 milliom years ago. For a long tirne palaeontologitts believed that they were an aberrant side branch of the man wertebrate stern who had made the capiesl mistake of concentrating on armour instead of motility. But now steyend authoritics regard them as ancestors of the true fishes, hawing lost their numour by the nomal workings of natural welection. Whatever the truth may bee, there has eertainly been a continual conflict in the history of life between the respoctive merite of skeletal armour and motility. Usually we find that heavy armour is a4sociated with the more sluggish and static types of life, while small and agile creatures are withoue it. There can be no doube which qpectitization has had the greaser survival value, for the small, the foilt, and the a gile have nearty always succeeded, while the pronderous and silowmoving have getuerally failed. An apt analogy on this point can be drawn from humat. warlire. A* the military ath have developed, the medjeval soldier with his cumbersome armour has given place to the lighty armed, swilt movidy commando. Likewise, the steel-plated bateleship has been superseded by the jet aircralte. which relits almost entively on its apeed and manomurability for both attack and cecape. These military leasons, hardy learned through the few brief millennia of hurnin history, were elearly written milljons of years before in the boucg ofextinct races, vanquished in that universal battle for tile whose progetss we are now recording.
 did the oftracoderms ever become armoured at all? There is no eertain answer to this question. The development of armour, like that of ahellos, may posstibly be explained in the ferst inqtance by the operation of cherrical laws over which the animal has no control. More likely, howewer, is the wiew that Aymor wat the first experimental meatus used by the ostratederms to protect themselves from the giant eurypterids, or sea scorpions, who shited their emvitomment. Laver it what lound that concentration on speed and agility was of greater survival value and the armour in successive generations was reducted. This is the way in which the true fishtes, with their ortreme speed, grace, and agility may have come into being.

Whatever the evolutionary processer intolved, by the end of the Sillurian Period the animals with backbones were well on the way to domination. The following Period, the Devonian, sece their frat wrumph and glery, and the differentiation of the wertebrate stock into an infinile variety of farms.

也нAPTEH I

THE AGE OF FISHES

The Dewoniais Pertiod, of Age of Fishes, taken its name from the rocks of Dewonthire which Sir Roderick Murchion and his colletayey, Adam sedgwick, firbt inventigated in og 6 . They were a meth motilated serie, however, and nowadays the Devonian rocks of the Rthine valley sme cegarded as the outstanding examples of thege forrations in Europe. The opeming of the Devonian sems to have been a diseurbed time ins. the history of the Earth, Volcanoes belehed fire and lava, and wideapread Earth movements threw up many mighty rew mountais ranges. Todiny visitors to Scotland and the English Lake District can still see the huge matrote of granite and other igneous rocka that were Foraned in that distant Devorian Period of 250 million years ago.

The turnult of Earth movements led also to mariy changes in the distribution of land and sea, For instance, the forsill and geological evidence now showa w that Europe and North America were probably commeted by a land bridge streching from Western Irelond to Newloundland. This ancient causwaty, which geologist have ramed Etia, has long since foundered beneath the waters of the Atlantic, but a fragment of it may still survive in the shallow bank from whith Iceland toow risen.

The climate of the Earthat this bime seems to hawe been as watin and equable as it was during the Silurinn. In some areas, however, it became increasingly arid, and great belte of sandy desert spread across the world. There were henoy seasonal rains like those now found in the monson areas of the tropics, and, its we shall sec, these had allimportant contequences on the luture development of lifer. In the seas coral reefor continued to flourigh and [ncrease, ahowing that the waters remained warm and fairly shallows. One cup
 duced individual buds or corallas three incher indiameter
and two feet in length, making it the greatent cup coral of all time.

Among the marine invertebrates mearly foll kinds continwed at first to flourish despite the growing competition of the fishes. Starfish and other echinoderms were on the increaser. while the graceful and gongeously coloured sca bilies covered the rocks of the ocean bed in gay protusion. "Towands the end of the Period the first amernomites appeared, and the litule brachiopods, tor 'lamp shells', reathet the peak of their evolutionary success. Even the trilobites, who in general were on the declinen produced as fithot flamboyant geture the largent tepresentetive of their tribe - the mighty Doimaniter, measuring nearly two and a half feet in length.

But it is to the new and wonderful varieties of flsheg that the Devonian seas really belonged. The primitive oftracoderms weregiving place to more activespecies, some of whom were migrating slowly from the rivers and estuariet towards the open sea. Their newly developed jaws and primitive teeth enabled them to leave the muddy botiom where the ostracoderms used bo grub for decaying Food debris, ind range through the length and depth of the watere secking Lefing prey. Increatiady their compration threatened the dornimion of the giant sea scorpions and trilobites, and soon these ancient invertebsete found themselves fughting a grim and ailent batte for survival. This struggle reached ita climax during the late Devonian, for by then no invertebrate was a matel for the swiftly evolving and highly adaptable fish. By the close of the Period the sea scorpions and trilobites were well on the road to extinetion.

The new wertebrate rulers of the seas quidkly developed by a sudden qutburst of explosive ecvolution into a multitude of difterent forma. Their exact anoestry is still disputed, but they must hawe originated in a group en arnmals not unlike their ostracoderm predecessors. The earlliest and most primitive group ware the Placodermil, or "plated skins', the first vertebrate to possess cudimentary jawg. Mext came the Clanderichthyes, of 'gristly fighes" whose jaws thowed a considerable advance on the placodenna but who lacked an
true bony skeleton, And finally there were the Qsteichtiyes, or "bony fishes", who were the ancestors of most of the fish types living today.

Of all this great variety of Dewonizn fisher the ancient placoderme are those who most powerfully affect our imagination. This group is divided into tour natural orders, of which the there begt known all begin with the same initial Ietter, and for onee are quite caty to prodounce: the Acanthodit, the Antitechil, and the Archorodira. The fourth order, which has been more retendy invealigated, has been named the Stegoselachii, andits members look like armoured caricatures of our modern skates and rays.

The açanthodians, who are the most primitive of the placoderms, ere srametimes referred to as 'spiny shath's' because their fing consist of a web of skin supported at the front by a stiff spine. Thete were two of these fins one behind the other on the back, and two pairs ol fins, pone lore and one alt, on the underside of the body. Thus the acanthodians forchadowed the cypical fin arrangernent of modern fisher, although ofter, as in the genera called Chimatios and Eytheandher, they had several additional pairs of small spiny fins between the two maini pairs underneath. In other ananthodians, such an Purewus, the dorsal spine grew to about hatf the length of the creature's body, so that ite owner must have found it more of" an embarrassment than an ndvantuge. Despite their popular name of "spiny shafk' bue acanthodians were not closely relased to the true sharks which we shall be desaribing later in this chapter. Nor did they olten grow to more than an few inches in length Like the oftraoflerms, they were exclusively freshwater lish, rever verturing fitr down the estuatries towards the open ser.

Sharing the Devomian lakes and rivers with the acanthow dians were the representative of the second placoderm order, the antiarchs, who likewise never grew to any great size. These were so grotesqute and elaboratelly specialized that carly palaenatologist were at a low to know how to elassify them: In that geologieal classic, The old feed Sandshore, publivhed in 1 B qu $^{\mathrm{T}}$. Hugh Miller devotes nearly a
chapter to his discovery of one of the most bamoss of the antinechs known as Plerichthys, or Plerichidywdes. This was at small ereature between six and twelve inches long, the forepatt of its body entated in booy anmontr, fattemed underneath and risieg on top to a pronoumped peak. Its cycs were placed on top of its head and between them wata an third, or pineal, eye = an orgar commonly found in the lower wertebrates. Two bone-plated lifthe like the lege of in crustacean projecred on either side, and the body was oovered with a fantantic atmotered shecll, a fact which Fed Miller to remark: ${ }^{4} \mathrm{My}$ first lormed iden xegarding th was that I had distovered a eornecting link between the tortoise and the firh., But he soon recognized his error and went onf to give an accurate and incidentally most chatming and readable destription of the creatures's appearence and characteristics, Even so he cannot resist one of his favorite jibes at the evolutionary thoories of Lamanck: "Had Lamanck been the disocopere', he says, "he would unquetionably have held that he had calugly a fish alwost in the act of wishing itself into a bird, ${ }^{2}$

The placoderms we have been describing so Far have all been small freshwater forms, but with the arthrodirets, or "joint necks", we come to an order which ineludes the first of the vertebrate giants of the seas. These were less heavily armoured than the antiarchs and some of theit bory platize wat cowered with skin in a timilar menmer to a human skull. Their name derives from the compliented peg and socket joint which connected their head and back, enabling the head to be moved up and down but not from side to side. They ako had a lixed lower jaw, which meant that the hesad itself had to be raised and lowered to grasp the preys. This is, of course, an exactly opposite arrangement to that frund in all species of the higher animals.
\$ome of the Arthrodites, such as Cancoster from the Devonian rocks of Sobland and Germaty, were only about two feet in leagth, but the order also included some of the greatest ocean cornivores of all time. We owe much of out knowledge of the giant Devonianarthrodires to the generosily of a group of American business men who subscribed for a
mich hanical excavator to dig the fossils from the centre of Cleweland Dity, Ohis. The most spectacular specimens were between twenty and thirty feet long, and were assigned to a genus with the name of Dinebretps meaning "terible" or "huge' fish. One incoraplete fossil, which was chretstered Tharidhthys, was eatimated to have been even bigger in life than Diriohblys, with a pospible length offower forty teet. The skulls of these great arthrodires, which often measured ower a yard long, were equipped with jagged projections on the jaws which served as primitive teeth. No other occupant of the sea sould rival them in speed, strengeth, of material equipment, and ther were wery much more prominent during this Period than any other type of fish, Yot they must hawe spocialized in quallitie that did not in the long rum make fot surwival, for after a meteonic rise and fall they disappear lar ever from the geplegical record.

Alubeugh the arthrodites were one of the first groupt of fish to mowe firom the fresh or brackish water of the estuaries towards the open sea, they were not alone in their enterprising adventure. Both the Chondfichthyes, of "gristly fishes", and the Otteichthyes, or "bony tishes", which we rentioned earlier in this chapter were well represented in the Devonian seat. Many examples of the gristly fishes have survived into modern times, and inchade such familiar species as the sharles, skates, and rays, as well iss such strange decp-sein fikh at the chimaera, or ratlish, and its various relased forms. But the bory fishes have been even more succesflul. Today cvery single freshwater fisfa belongs to this class, in addition to the vast retijority of sea fishes, comprising ower 20,000 species.

Coutifage is not ensily preserved in a fosil state and therefore remains of the grietly fishas are few and far between. However, in the same Cleveland shale of Ohio where Dintehbyys wats found, there ave examples of the stiall Deqonian shark Ctadoseloche، In miany case preservation has bech exceptionally gooct, so that the body outline can be distinguished, and even some details of the sott parts such as muscles and kidneys. Cladoblatok was an ocean-dweling
form, but another Devonian aharls called Plawracandat, had returned to the aneestral fresh waters of the lakes and rivers. It had a torpedo-shaped body between two and three feet long, and behind its head there grew a long spine which wat wornetimes over a thitd of the length of its bordy. No one knows exanctly what this spine was for, but one of the fascinations of palacontology, as of natural history in gentrat, "; that it posen so many intriguing problems of this kind. A possible explanation is that the apine acted as a brealswater for the exeeptronally long dorsal: fin.

In Devonian time the arthredires and the more powerful of the gristly fishes were the dominant eates on the Earth, but they were soon to be dethroned by the great class of the Osteichthye, or "bony fisthen", who still rule over the oceans of today. The kingdom of the bony fishes has two main diwisions of which the most important it now the group known as the ray-finued lish of, to be nore technical, the Actinopterygui, These fish are also locsely termed ganoids, or "beighe sated fisth", and include not only such primsitive extinet forms as the palacriscoids of the late Palacozote, but a huge growp known as the teleosta whath ceantains nearly the whole range of modern fish.

Tut the reader who is lesh interested in the fish themselves than in the main line of human ancestry can fotget the minu*ate of ganoid dassification and concentrate instead on the other much smaller group of bony lishe known the the Chornichthyes, or "fighes with internal noatrils". Although today, by companison with the ganoids, these are an insignificant and utcliversified groups, their Dewanjan Forebears played surh dn overwhelmingly importent part in our story that we cannot afford to dimmiss them lighty.

The distinguishing Feature of the Ghoarichthyes was that, in addition to the gill slits by which fisher morraally extract oxygen from the water, they abo had a pair of well-developed internal cavities, or lunge. Actually this in itserf was not particularly ennusuad; lung-like structures existed in many other kituds of fishes, and were hated as eask-flled buoydncy chambers to enable their owners to rise and all
in the water. But what was unique and unprecedented about the lungs of the Choanichthyes was that they were adapted to function in the same way as the lungs of land animals. In other words, the Choanichthyes could take in the oxygen they needed directly from the air.

Why, we may ask, was this special adaptation necessary, and how did it come about? The answer may well lie in the nature of the Devonian climate, which we have already described as of great aridity, broken by heavy seasonal rains. As a result many shallow lakes and streams were in high flood for several months of the years and then as rapidly dried up, leaving their unfortunate inmates stranded on the sandy bottom. The survival value of an air-breathing mechanism in such circumstances can be easily understood and was almost certainly the reason why the Choanichthyes developed one.

This view is supported by the branch of the group which survives to the present day - the Dipnoi, or lungfish. There are three genera of lung fish that are especially well known, found respectively in Australia, South America, and the Nile Valley. They inhabit swamps and marshes in regions of seasonal drought, and when these dry up, the American and African species simply retire to a mud cocoon and breathe air until the coming of the next rains. The Australian lungfish is less versatile, but is nevertheless able to surface and take air directly into its lungs.

But the air-breathing fish that principally concern us here are not the Dipnoi, but an early branch of the Choanichthyes known as the Crossopterygii, or 'fringe-fins'. This branch of the group was thought until recently to have been extinct for well over 60 million years. It was therefore with excited astonishment that the scientific world learned in 1939 of the capture off South Africa of a coclacanth, one of the original crossopterygian fish. Unfortunately only the skin was preserved, but several further eatches made since the end of 1952 have enabled the complete anatomy of this strange creature to be fully investigated.

By a study of the lungfish, the coelacanth, and the fossil
remains of other early crossopterygiant, we have now been able to learn a great deal about the anatomy of this primitive group, as well as the workings of the air-breathing mechanism. In the crossopterjgians particularly we find that the arrangement of the paired fins is well adapted to a type of fous-limbed progression. The internal tkeleton is projected into fout fleshy lobes which form the bawis of the fringed fins, an arrangerneat which obviously foneahadows the developinent of four-legged land animals. Moreover, the lobes ate controlled by strong museles, which suggesta that even when the earliest crousopteryians were strictly aquatic the fins may hive been used for crawling along the muddy bottom.

There, is of tourse, no suggestion that such a specialized creature 动 the coplacanth could be a direct ancestor of the land vertebrates. Even less possible is an ancestral relationship with the lunglish. Such primitive air-breathing species had already get forth in their early history on ewolutionary lines of their own. But what is now errtain - and will be developed at greater length in the next chatper - is that somewhere in this alunost extinct group of the Choanich-
 the coelacanth may nor be in the direce parental line, but they have ar lenut a very goced tide to be rumbered fimong our barlitat aquatic unele and aunts.

OHAPTER13

THE GREAT INVASION

The stage is now set for one of the most momentous events in the drama of life - the invasion of the land by the strange early creatures of the sea. For long ages - far longer than any human mind could attempt to imagine - she Earth's landscape had been a barren wilderness of rock and stones. The vast silence was broken only by the whistling of the wind among the mountains, the staccato ratele of raindrops, and the hiss of great rivers rushing headlong towards the sea. Occasionally the menacing mutter of a volcano would swell into the crescendo of an eruption, or the ground would tremble as an earthquake sent deep cracks and fissures snaking across the barren plains. But there were no trees to sway and rustle in the breezc, no insects humming drowsily under the summer sun, no single song or call of beast or bird to break the uneasy stillness of that lifcless land.

But at last, slowly and almost imperceptibly, the Great Invasion began. The waves lapping the rocks, and thudding monotonously on the barren beaches, left a green scum at the meeting place of sea and land. Tiny relations of the trilobites and sea scorpions, stranded on sandbanks or muddy deltas, slowly learnt the first adaptations necessary for an air-breathing existence. Many were dried up and killed by the rays of the sun, while others were washed back by the waves or tides to their native element, but with the passing of the ages a few of these unknowing pioncers managed to establish a precarious bridgehead on the fringes of the primeval seas. The first lichers and mosses took root in the damp crevices of the rocks; primitive land planes pressed forward up the beaches and spread over the desert plains; creeping and crawling things scurried and writhed in the marshes and then slowly advanced from the nudflats of the tropical estuarics to the virgin forests of the interior. And at last, somewhere on the Earth, a primitive air-breathing fish
forsook its ancient home and set out to dare in this strange new land a vast and unpredictable future.

Not unnaturally it is these first vertebrate land dwellers who mainly capture our imagination and who will play the leading roles in the remainder of our story. But we must always remember that their advance from the sea to the land was only made posible by the earlier landward movement of the plants. For this reason, before continuing, we will briefy recapitulate the main stages of plant development, and also say a word or two about the first air-breathing invertebrates who made an independent conquest of the land at about the same time as our own ancestors.

Our last mention of the Vegetable Kingdom was in Chapter 9 , when we spoke of the plant-like bacteria and the great natural division of the Protophyta, or 'first plants'. We particularly stressed there the importance of the Algae, of which there are over 8,800 different species, and which include the plants familiarly known to all of us as the ocean seaweeds. There is amazing variety between the members of this group, which range from microscopic fieshwater forms to gigantic seaweeds measuring between 100 and 200 feet long. Some of the smaller Algac, such as the diatoms commonly found in the surface-floating plankton of the seas, secrete membranes of silica which are preserved in drifts on the ocean floors. Others have adapted themselves to life in such extraordinary environments as the snows of high mountains and the poles, or the waters of hot springs. For example the Algae found in the hot springs of the Yellowstone National Park in the United States live and breed quite happily at an average temperature of $187^{\circ} \mathrm{F}$., only $25^{\circ} \mathrm{F}$. below the boiling point of water. At the other end of the scalc are the great ocean scaweeds known as the Laminariales, or oarweeds, These include such giant forms as the fifty-foot Nereogstis of the North Pacific, and the mighty Mecrocystis of the southern seas, which sometimes exceeds a length of 180 feet.

All these Algae belong to the more primitive of the two great subdivisions of the Vegetable Kingdom, which
comprises what are technically known as the 'non-vascular' plants. Plants of this type have no true leaves, stems, or roots, and are without a well-developed internal mechanism for conducting food and water. They are thus restricted mainly to an aquatic environment and the majority actually spend their whole lives totally submerged under water. Many others, such as the scaweeds growing on rocks and breakwaters, are covered intermittently by the tides, while even the land forms, such as the fungi, liverworts, and mosses, camnot exist except in reasonably moist surroundings.

It was these simple kinds of plants that in the early years of the Silurian Period made their first tentative advance up the Earth's inhospitable shores. Before long the racks of the sea coast and the marshy fringes of the estuaries were carpeted with the first kinds of moss and lichen. For the first time since the cooling of the Earth's crust, the land began to take on a colour that was not a property of its own rocks and minerals but was added to it by the agency of living things.

But the non-vascular plants were obviously unsuited and inadequate to the demands of a full-scale invasion of the land. As a result, throughout the Silurian and early Devonian Period, a more elaborate type of plant life developed which.could survive away from the seas and rivers, and did not demand a perpetually moisture-laden atmosphere. These new kinds of plants had long roots that could suck moisture from deep in the ground, and comparatively rigid skeletons that would hold them erect so that they could bathe in the life-giving rays of the sun. Their stems were either hollow or fitted with an internal network of tubes, so that water could be conducted to any part of them at will.

By the middle of the Devonian Period these 'vascular' plants, as they are called, were widely established in many of the land areas of the world. Some were unadventurous and clung timorously to the borders of the lakes and rivers, but others, better adapted and more enterprising, advanced across the empty plains and up the lower foothills of the mountain ranges to form the Earch's first forests. The trees and plants of these forests, although widely differentiated in
shape and size, were all entirely unlike the typical plants that live today. None had true leaves nor any kind of flower, and the landscape must have been a subuly coloured Whistlerian symphony in varying shades of green. The most advanced kinds of plants were the ferns and tree ferns, some of which had already adopted the modern form of reproduction by means of seeds. For the rest, there were some odd smooth-stemmed plants with needle-like spines, a fcw primitive horsetails, and a variety of trees known as lycopods, which were covered with a growth of overlapping leaf-like 'scales'. The name lycopod comes from two Greek words meaning 'wolf foot', because of the claw-like shape of the roots, and members of the group are also popularly referred to as 'scale trees'. Some of these primitive Devonian troes have left fossilized stumps more than three feet across, while the tallest of the lyoopods, dignified by the imposing name of Proolefpidodendren primertwm, or 'first primeval scale tree', grew to a height of over forty feet.

On to this new stage, with its backeloth of green vegetation, there slowly advanced the invertebrate spearhead of the Great Invasion. Quite early in the Devonian Period, soon after the land plants had become firmly established, several kinds of marine invertebrates were accustoming themselves to a partly terrestrial life in the intertidal beaches; then the inevitable step was taken and they became truly air-breathing forms. There were mites and millipedes and wingless insects, and creatures like woodlice who may have been related to the trilobites. Small scorpions, seldom more than an inch or two long, lived on the sandy shores, and another group of arthropods developed into the earlicst land spiders. By the end of the Devonian, the primeval forests were teeming with these tiny life forms, the ancestors of the strange insects and other land invertebrates who were shortly to come into their own.

Only one group was now missing from this opening act in the drama of land life - the group of vertebrate air-breathing fish whose ranks contain the forebears of all the principal actors in the cast. As we said in the last chapter, neither the
lungfish nor such a specialized crossopterygian as the coelacanth can be qualified for this ancestral role, but there are several other crossopterygians who may be nearer the main line of descent. For instance, the primitive Osteolepis shows many of the anatomical characteristics that were later developed by the first land dwellers, while even the more highly developed Eusthenopteron, which could flounder about on the shore with its muscular fin lobes, seems significantly near the main evolutionary stream.

In any case, a variety of air-breathing creatures of this kind were not slow In making their appearance, and well before the Devonian Period gave place to the succeeding Age of the Coal Forests they were scuttling ilong the

The Devonian cromopterygian Osfontapis
beaches and mud-flats, and perhaps snaking brief forays after food into the neighbouring undergrowth. As the millennia went by, they established themselves in increasing numbers and variety along the world's coastlines. It was a slow process of infiltration rather than a mass invasion, and was as devastatingly effective as such methods often are. Before long the descendants of this enterprising and adaptable fifth column of the sea had entrenched themselves on land in a position of impregnable strength.

With the primitive crossopterygians we take leave of the last group of creatures who ean definitely be assigned to the great natural class of the fishes. We must now turn to the important group of creatures which occupy an intermediate position between the crossopterygians and the first of the true land-living animals. These transitional forms, belonging neither wholly to the land nor to the water, are placed
together in the natural class of the Amphibia, which is still represented by several creatures that exist today. Frogs, coads, newts, caccilians, and salamanders are all living amphibians-the last descendants of a group who at the time of the Great Invasion were the most important creatures on the Earth, and from whom all other land vertebrates have since been derived.
The main characteristic of the amphibians is that, although they can breathe air and are partially adapted to life on land, they must in general return to the water to breed. The typical amphibian life-cycle can still be studied in the common frog. As everyone knows, the frog lays its eggs in the water and in due course these hateh into the fish-like tadpoles. As the tadpoles grow, their gills disappear and their Jungs and limbs quickly develop into those of land-dwelling animals. Soon the newly formed frog leaves its aquatic environment and ventures out into the damp grasses and rushes of the shore. But it cannot make a complete break with the water, for sooner or later it must return there to breed.

The early amphibians obeyed the same laws as the modern frog, and it was only very gradually that their successors learnt to adapt themselves completely to land life. In a later chapter we shall briefly describe how this oocur. red; here meanwhile we must glance at some of the first amphibians to pioneer the invasion of the land. The most primitive of these creatures were known as stegocephalians, or 'roofed-heads', because of the heavily boned head structure they had inherited from their crossopterygian forebears. The word is a general term, however, not used by palacontologists as a guide to classification. The natural divisions of the amphibians are mainly determined not by the head structure but by a number of differences in the vertebra of the backbone. These differences are only of interest to anatomical specialists, and for our purpose it will suffice to describe a few of the early amphibian types.
The most famous of these creatures were those known as the labyrinthodonts, a word which means "Jabyrinthine
toothed' and which derives from the peculiarly construeted inward folding of the tooth enamel. This contorted tooth structure, incidentally, was already apparent in such primitive crossopterygians as Osteolepis, a fact which confirms the main line of amphibian descent. The labyrinthodonts flourished from late in the Devonian right on into the Triassic Period of the succeeding Age, a span of at least 100 million years. During this time they took on a multitude of different forms, ranging from a few inches in length to ten or more feet. Many of them retained the elongated body of the typical fish, and a flattened tail that was uscful in swimming. Modern amphibians still show evidence of this same aquatic aneestry. The salamander, for example, even when supported by its legs on dry ground, progresses with the sinuous s-shaped twists of the body that charaeterize the fishes.

The smaller labyrinthodonts seem to have been the most successful in establishing a satisfactory life away from the water's edge. In early large types, such as the fifteen-foot monster known as Eogrinus, the limbs were primitive and largely undeveloped, showing that it never travelled far from its ancestral home. This is really not surprising, for once the support of water had been removed, the possession of mere bulk woukd have become a handicap rather than an an advantage. As is demonstrated so often in the history of life, it is the small and active annimals who are the most adaptable and lead the way in exploring new environments.

Among the labyrinthodons the most suocessul early form was the little creature known as Diplavertebron, which was only two feet long. The shape of its body and its thick wedge-shaped tail remind us of a small modern crocodile, and its strong, well-developed limbs were well suited for making fairly lengthy forays on land. Nevertheless it probably fed mainly on the small palaeoniscoid fish who lived in the Carboniferous rivers.

Gradually the adaptations made by the labyrinthodonts to land life became more and more successful until, with the American genus Eryops, we find a creature who spent most
of its time on land and only returned to the water to breed. Eryops was found in geological formations in Texas and was of different proportions to its more fish-like predecessors. Is measured about five feet long, and was very thickset and stocky, with short but powerfully developed limbs. Despite its comparatively successful carecr on land, its legs were still of the sprawling type that characterized all the early amphibians. The upper parts stuck out horizontally from the body with the lower parts pointing downwards at righe angles, an arrangement that must have given Eroos a somewhat clumsy gait. This was bettered by its smaller relation known as Cacops, who developed proportionately longer legs and a

Diplocaulus, an extrsordinary amphibian from the Lower Permian of North America
shorter tail; but none of the amphibians ever achieved the agality of the more advanced forms of life.

The labyrinthodonts were the most important of the early pioneers of land life, but their advance was shared by a number of other amphibians of even more extraordinary sppearance. To take only one example, it is impossible to look at a reconstruction of the little amphibian known as Diplacaulus without beginning to doubt the evidence of one's scnses. Here, in the smallest space - for Diplocaulus was only two feet long - is one of the most grotesque creatures that Nature ever produced in the catalogue of life. Its body and skull were broad and flat, its legs disproportionately short, and its eyes set close together on the upper surface of its
head. The skull itself was extended backward on either side by a pair of bony projections or 'horns', which gave it the appearance of a modern tailless aircraft, or a boomerang very much broadened in the middle. So bizarre and exeravagant was the creature's anatomy that we can be sure that it was an overspecialized and degenerate form - a bad evolutionary joke, living without hope of readapting itself to the main stream of progress.

But not all the contemporaries of the labyrinthodonts were as extraordinary as Diplocanlus. For instance, a litte five-inch amphibian known as Microbrachis looked superficially like a scale model of a large carly labyrinthodont. It belonged to a group of ereatures known as the microsaurs, or "little reptiles', who despite their name had far greater affinitics with the amphibians than the reptiles. There were also long snake-like creatures such as the three-foot Ophiderpeton, or the little Sauropleura, barely seven inches long. These creatures were related both to Diplocoulus and the microsaurs, but had either lost the legs they originally possessed, or preserved them only as vestigial structures.

Despite the profusion and variety of the early amphibians, we must realize when we look today at their insignificant descendants that they are a vanquished race. Certainly they were the first creatures to attempt life on the land, with all its strangeness and unknown possibilities; and they were also a vital and indispensable link between the creatures of the sea and the land. But they failed to take the ultimate risk, to make the final adaptation, that would have emancipated them for ever from their aquatic environment.

Yet somewhere among them, among those countless millions of forgotten creatures who scurried through the undergrowth of the world's primeval forests, there must have been one who handed on the flame of vertebrate life to the great all-conquering reptiles who were to come, for life is a continuous process and the vitality of future races is born at some stage out of the failures of the past. In the next chapter we shall deal at more length with this subject. We shall try to paint a picture of the great Age of the Coal Forests, and

A Gudat to Earth Histop

the period of erisis and catastrophe that aucceeded it. When the dust and tumule of this climax in Earth history figve died away, we shall find that but for the eirly amphibian pioneers the wreh of life would never have ghane so brightly into the future

THEAGE OF THE COAL FORESTS

The time in Earth history when the amphibiant were adapting themselves for the first time to life on land is known to European geologist se the Gatboniferou Period. It is divided into two pariz, a Lower Carboniferous lasting for about 20 million years, and an Upper Garboniferous listing for about 35 million years. In America the pructice is somewhat different, the Lawer Gartoniferows being called the Mississippinn Period, and the Upper clad Petnsylvasian, after the rock formations found is those States. The worl Carboniferous comes from the Lation wod 'carbo', meaning coals and the later, or Upper, of the two Peried, which beganabout 255 million ycare age, 䥻important for being the Eime when about Jnalf the workentile coal measure of the world were laid down.

Coal is a rock-like fossil fuel formed by Earth pressure from annemt deprosite of decaying vegetation. The modern form of these deposits an be seen in the familiar peat boges of Britain, and more eapecially of Ireland, where soil is naturally mingled with the remairs of moss and reeds to formin ofolt and spongy carpet. Fome of these bogs and Forty or filty feet deep, and the peat, when dried, can alteady be used as a smokeless if tather incficient form of livel.

The formation of peat requises considerable moisture and an adequate sexpply of wegetation. Its walue at luel varics not only with the conditions under which it is laid down but also with the type of wegetation comprosing in, The same ching applies to all those ancient deposids of pent which have been hardened into coal, such coal measures have been formed at several periods during the Earther histery, but in sone have the requirements for a first-quality fuel been so generally and ideally fulfined as in the primeval forests of the Upper Carboniferous Period.

It secms that the climate at that time was becoming steadily warmer and moister. We can tell this not only by the presence of the coal messures themselves but from the fosell remains of amimals and plants that are astociated with them. The plant imprints lound in the coalfields tell of a luxutionat wegetation such is the werld hid newer hitherto knownt Studtents of foasil plants - of palacobotanists as they are called-can tell from the texture of many of these leaves rhat they mant have grown in exceptionally watm and humid conditions. The warmeth of the climate is also prowed by the presenec in hight latitudes of the fossil remains of eorato and other tropical animala of the period. For example, in the icebound island of Spitzbergen in latitude $77^{*} \mathrm{~N}_{1}$, it is still posible to see massive coral reef dating from this great Carboniferous summer of long fago.

Apart from the climate the geographical conditions of the Carboniferous Period were jdeal for the formation of the coal mesasures. In the nothern bumisphere, where most of the world's coal is now found, Earth movements were raising former seat beds into lite, swatripy plaia*. These were perfect sites for the growwth of the coal forests and soon many thousands of equare miles were cowered with trees and dense undergrowth. Theswamp waters protected the dend or fallen plante from irmandiate decays, and layer upon layer of wegetation tumed slowly into ditich beds of peat. Buried under later sediment these gradually became metamor= phosed into the rich coal seams of today.

The proctess by which peat is turned into coal makes a fascinating study, but is still imperfectly understord. The principle, brielly, is the elimination of the hydrogen and oxyegen in the decayed matter so that its carbon content is proportionately incrensed, Biochemical action by lungi and bacteria plays a large part in this change, as dos the theat and pressuce set up by the adeumulation of new sediments. There are so many dactory gowerning the formation of difterent coal measures, ewen if they are of the same period, that it is not sumpriside that the final produce warices so much in type and quality.

The astonishing richness of the Carboniferous coal fields is perhaps mone apparent in Amerien than anywhere else in the world. The United States is the latrgert single coale producing country, with an annual output approathing fiot millions tons. In the Upper Carboniferous anthracite field of eastern Penusyluatnia the seams are often forty feet thick, and an annual output of over for million tous hat bean kept up for more than twenty-five wears. The workable searth of westen Pennsyluania, Virginia, and Ohio occupy 6,000 square mile and are estimated to contain mo lens than 22,000 million tons of coal. The yield of the mines in this areat hus a. value of more than swenty times that of the ontput of the geenteth gold mine in the United Stanes.

Enough has now been said to show the immonet interest and importance of the Cabboniferous conit mensures. We must next turn to the wast wamp locesta form whicll they were Formed, and ery to ewoke the atmersphere of that incient landscape, with its strange trees and plintes and multitudingus animal lile.

The yegetation of the Garboniforous Period was a direct development of that of the Devorian, whicha we described in the last chapter, Many of the plants were still what botanister term "eppore-bearers". This hame ridest to their method of reprodutcion by the tiny bedies known as spores. which are cast loose by the parent plant to grow as best they
 bearing planks. These are a flar more specialized form than the spore-bearers, preserving the teproductive cell on the plant until the embryo has reached quite an adwaneed stabe All out typteal mottorn llowering plants are seedbearers, whereas the more primitive feris preserve the old meilhod of reproduction by means of spores.

The giants of the Carboniferous Period werestill the lycopeds, or seale trecs. These were diwided into two main types, Lepidodendron and Sigillaria, many of whith grew to even greater size tham theit Famotst Devonian predeccasor, Protar lepedadendron primanw. The typitall Lepidedendron of the Carboniferous Period grew to a height of over 100 Reet..
'The lower part of the trunk was straighe and slender, often frot will over three-quarters of its length, and then divided into a fautastic array of branches like a candelabra. Fossil romains of oue British species have been found that probably exceeded 130 feet in height.

All species of Lepidodendron were covered with the typical overlapping scale-like leaves which give the lycopods their popular name. The leaves themselves have seldom been preserved, but their shape and structure is known from finsilized imprints. When they decayed they left behind a paittern of scars on the trunk which are a great help to palarobotanists in identifying Lepidodendron fossils. The pattern is always arranged in a steep spiral and is as neat ant regular as a man-made mosaic.

The other type of lyoopod, Sigillaria, had a broader trunk than Lepidodendron, but it was less commonly branched. "The uame comes from the Latin "sigillum", meaning a seal, and was given to the tree becausc of the fantastic appearance of the leaf scars. Each of these so elosely resembles the imprint of a seal that it is difficult to realize that it is not artificially produced. The leaves themselves eovered the whule trunk, but grew longer and more imposing towards the top. The largest leaf specimen of all, deduced from the foxsil evidence to exceed three feet, belonged to a species with the suitably impressive name of Sigillariophyllum lepidodendrifolism.

Apart from the lycopods, the most remarkable trees of the swatup forests were the Cordaites, named after the nine-teeuth-century Bohemian palacontologist August Joseph Corda. These were the forerunners of our own coniferous firs and pines but differed from them in several important ways. for instance, their seeds were spread out at intervals along a stem instead of being concentrated in cones, and their leaves were strap-like instead of the typical needle shape of modern conifers. The Cordaites were tall and graceful trees. Some specimens grew to a height of 120 feet or more, and had trunks over three feet in diameter. The wood resembled that of a modern pine, but the trunk was bare of branches for

 Prolaeaxdict shlurar,

 Juntaian Parinct.

Ih, A primsinive anuphibian on the shares of a Demonian entuart,

Edmblimitric.

7a. Tysonosomis ret, greatest of the carnivurones dinomury, attacking Tricrraledo.

Ba, An ichnthosaur (foreground and p plesuatur - brpizal repilile of the Mchowicseas

```
1%%.1
```


ith. Afaropur, a chalicolliece.

 giand érmastillo.

 and mulw

143. Austalopitheciane rytning.

16a. The fint true men: cave pwinters of the Upper Palseolithic.

16b. Mea of Central Europe twenty thousand yenrs ago.
nearly three-quarters of its length. It then branched into a luxuriant crown of branches and green foliage, with leaves that in some species were over four feet long.

By geological standards the Cordaites had a very short period of success. They were unknown before the Carboniferous Period and died out at its close, to be followed shortly afterwards by the giant lycopods. But other great plants of the time were more adaptable and their smaller and humbler relations are living to this day. For instance, the insignificant 'horsctails' or scouring rushes, commonly found in waste and gravelly places in Great Britain, are the cousins of the gigantic thirty-foot Calamites of the Carboniferous Period. Also many of our modern species of ferns and tree ferns are directly descended from the great ferns of the primeval coal forests.

Now what of the animals who peopled these ancient jungles? In the last chapter we described some of the early amphibians who were slowly evolving through Devonian and Carboniferous times. These were the most advanced creatures of the age, but the warm climate and the luxuriant vegetation of the swamps also provided ideal conditions for the development of the first insects in the world. Many of these belonged to orders and families long since extinct, and several of them grew to gigantic size. At least three species measured over a foot in length, and the most remarkable of all, the giant dragonfly known as Megancura had a wingspan of about twenty-nine inches.

The smaller invertebrates closely resembled the familiar species of today. Spiders scurried through the damp peat, while centipedes and millipedes lurked under stones and fallen logs. Murderous seorpions attacked other insects and each other, and primitive cockroaches whirred through the silene glades. In Nova Scotia the remains of land smails in hollow tree stumps tell how uncxpected floods drowned them in their homes and buried them beneath water-borne sediments.

In general, however, the life of the coal forests must have seemed reasonably pleasant and secure. For century upon

CHAPTER I5

THE MIDDLE KINGDOM

The Permian crisis of 200 million years ago marks the end of the Palacozoic Era and the beginning of the Mesozoic, or 'Era of Middle Life'. This rather unsatisfactory name dates from the time of the early geologists, who regarded the Mesozoic as occupying a central position in Earth chronology. It is now known, however, that by the time it had dawned well over half the history of life had already been completed. There is therefore no longer any chronological significance in the name Mesozoic; it must be regarded simply as a kind of reptilian 'Middle Kingdom' between the great eras of the fishes and the mammals.

Today the surviving reptiles are represented by only three main groups : the snakes and lizards, the tortoises and turtles, and the crooodiles. Compared to the mammals, and even to the birds, they occupy a very lowly place in the seale of intelligence and evolutionary success. But this relative insignificance of modern reptiles must not blind us to the fact that during the whole of the Mesozoic Era they were the dominant creatures on the Earth. For no less than 150 millions years they reigned supreme on land, at sea, and in the air. No other race of creatures has ever held the stage of the Earth for so long, nor brought forth such an amazing array of gigantic and spectacular forms. No other race has enjoyed such a dramatic rise to fame, nor suffered such a complete and catastrophic fall.

The birth of this great Middle Kingdom, and the episode of explosive evolution which set it on the road to success, occurred at the height of the Permian crisis. But even earlier, about half way through the Upper Carboniferous Period, there were signs that a new kind of creature was developing from the ranks of the amphibians. This creature had at last discovered the secret of living a complete life on land. It had developed a new kind of egg, with a hard shell and a
plenitiful supply of food, or yolk, for the embryo, so that it no longer had to return to the water to breed. Also the bone structure of its neck and toes showed that it was evolving a skeleton adapied to new and revolutionary functions; it was, in fact, no longer an amphibian but a reptile.
As we briefly mentioned at the end of the last chapter, the fundamental group of these first truc reptiles is known as the cotylosaurs. The name cotylosaur means 'cup-lizard', and is derived from the cup-shaped ring of the vertebra. The actual connecting link between the cotylosaurs and the Carloniferous amphibians is not definitely known, but scientists are now fairly certain that they spring from a primitive stock akin to Diplooertebron. When we reach Permian times, however, there are a number of creatures wellfitted for the role of 'mising link'. The classic example is the

Somourid, from the Permian of Texas
little Soymouria, barely three feet long, from the Permian rocks of Texas. This primitive lizard-like creature combines the attributes of amphibian and reptile in almost equal proportions, and its classification has puzzled palaeontologists ever since its discovery. Some describe it as an amphibian that is almost a reptile, others as a reptile that has just stopped being an amphibian.

With the cotylosaurs proper we have definitely left the amphibians behind and are dealing with the foundation stock of the whole reptile dynasty. They flourished from the time of the coal forests until the dawn of the Mesozoic, reaching their peak in the Permian Period. Remains of cotylosaurs have been found in rock strata in North America, Scotland, and Russia, and a number of especially interesting species occur in the famous Permo-Triassic formations of

South Africa. Here, on the Karroo, there is a vast natural reptilian cemetery occupying an area of 200,000 square miles. Over 1,200 different kinds of fossil reptiles have already been discovered there, and it is estimatod that the total number of skeletons entombed in these deposits may approach the altogether fantastic figure of 800,000 million. - The star turn of the Karroo formations so far as the cotylosaurs are concerned is the grotesque creature known as Pareiasaunss. Reptiles as a class can hardly be regarded as the most alluring members of the Animal Kingdom, and already

Parriananas, a cotylosaur from the Karroo formations of South Alrica
in these early times Parciasaurus was setting an all-time standard in hideousness. Its compact body, which measured between eight and ten [eet long, was very broad in proportion to its depth, as if permanently compresed by an invisible burden. Its skin hung in folds round its neck and limb joints, and was covered all over with prominent warty lumps. Is tail was short, stumpy, and ungraceful, and the triangular skull, which was flattened like the body, was encased at the top and sides in solid bonc. This last feature was the source of the name Pareiasaurus, which means 'helmet cheek reptile'.

The legs were a particularly characteristic feature. These were strong and solid, as indeed they had to be to support their massive owner; but instead of being set on underneath
the body, where they would be best able to carry its weight, they sprawled out from the sides with a sharply angled joint between the upper and lower sections. This arrangement, which was directly inherited from the amphibians, represented the height of inefficiency for progression on land. The whole energy of the animal must have been devoted not to speedy or even regular movement, but to an anxious anticipation of the tendency to give at the knees.

Despite its size and exceptionally repulsive appearance Parciesourus was apparently quite harmless. Its teeth show that it was a vegetarian, not a carnivore, and the claws on its feet were probably designed for digging rather than aggression. We ean picture it waddling through the jungle like a huge reptilian tank, crushing the vegetation as it went, and pausing from time to time to masticate mouthfuls of greenery or scratch in the soil for roots. Hideous and ungainly as it was, there is yet something pathetic about this strange creature of the past, caught up in an evolutionary process it could not hope to understand. Its incomplete adaptation made it a failure from the start, and even before the Mesozoic Era had dawned the bones of the last parciasaur were erumbling to dust under the burning heat of the South African sun.

But not all the cotylosaurs were as unlucky as Pereciasaunus. Some forms later evolved into the mighty dinosaurs of the Middle Kingdom, while others were the direct ancestors of the highly suceessful birds and mammals of today. For the purposes of our story three types of reptiles descended from the cotylosaurs are important. The first are the thecodonts, which were ancestral to the famous reptiles of the Mesozoie Era. The second are the pelycosaurs, which were very near to our own ancestral line and included some of the most spectactular of all early reptiles. The third are the therapsids which were a connecting link between the cotylosaurs and the first mammals.

We shall talk about the thecodonts later in this chapter; here we must first say a word about the other two groups which are so closcly conneeted with our own past. The
pelyopaurs, whtch include the famots 'Cint-backed" reptiles of the Permian, fre wirtually the first reptilian uncles of the human tace. That is to say, allhough they were not in the direct line af descent, they thate a common ancestor with oursalves. In wiew of this tact, we may be relieved to learn that they were tolerably atextetive animals. Their 穴eneral shape was that of a longevailed lizard, and although cheir Iegestillsprawled out sidewaysingtend of being placed undermeath the body, they wore reasonably gracefill and stretmlined. Whe of the most typicel formo 话 that known as Dimetrodong, from the Permiati rocks of Texas. This was about ten or elevan feet long and, in ommon with several others of the group, it had a membrane of skin supported vertically $\begin{gathered}\text { along the lewgeh of ita backbone by a row of long }\end{gathered}$ spines. This spectacular feature has made Dimelodion one of the most farmous of all prejistoric arimala and loas led to much spectlation tegarding the purpose of the membrane of fin. One theory, more temarkable for picturesqueness. than scientific probability, is that the repaile was partly aquatic and used its fin for tacking about the estuaries in gusty weather. Anotior even less eonvincing proposal is that it way simply a contounded nuisance. The latest and mest likely suggestion is that its owner, being Cilec all reptiles an cold-blooded createner, used it as a natural radiator for adjusting ite body heat by turning it at varying angles to the sun or bretere.

Dimelrodor was an aggressive carnivore with a battery of wicked-looking teeth, but other members of the growp were quite harmlests. An example of a milder variety is Eddophor Jawrits. which lived entirely on vegetation. It was considerably less svelte than its camivorots relation, baving a thick bared-alhaped trunk for the recoption of large masses of masticated plants. Its fin was more regular in height thant Dunatodong's and had the achded embellishment of bony crosbars sticking out at right angles on either side. In life these crossbars were undoubtedly conaected by skif menbranes, giving the creature the aspect of a full-rigged ship under full sail.

Compared to the pelycosaurs, the therapside who gradually sueceeded bhert were an ungpectacular group. They are, however, of ewen greater importance to our story for they were directly ancestral to the mammals; and therefore to ourselves. The lossill emains of therapsids ane common in rocks of the Permian Period and the darly Mesoroic Era, both in Eureper and in the Karroc beds of South Arrien, and they are classificd into owo pieteresquely named grouprs, the Dinowephalia or "huge heads", and the Theriodontia, or "beatt-toothed' reptiles. One has only to clance at a reconstruction of the twelve-foot monster Thfanghthenear potens, or the squat and ungrainly Konnengyerid, to see how the 'huge heads' got their mame. In addition to the massive skull the former hat a pait of long dagger-like teeth projecting from ite upper jow ; the laeter, which was a vegetarian, had an odd beak like mowth like that of a turtle,

But it is not the "huge heads' who are mainly of interest to us base but the "beast-toothed' therappids who fived at, the same time. These were much closer so the mammals than the "huge heads" and, as their name implies, they were alteady deweloping typical mamalinn canimes, incisora and molars, each sperialized for a different funtrion. This wat in sirong eontrast to the regular pegelike teeth of the more primitive reptiles. They were also evolving limbe that supportod theis body efficiently from undeneath instead of sprawling out at the sides, An advaned cearmple of the group is the wheient and active litule carnivore krown as Gying rathurs or "the dog"jawed reptile", from South Arrich This creature measured between four athd fiwe feet long and combined a feptilinn brain with an extroncly mammal-like body. Yet despite these advances, Cymgnothey and his fellow theriodonts must still dedinitely be classed as reptiles. Tlueip anatorny remained in many reapecte repalilin, and it js unlikely that they had yet leasent to control their own body heat. This meant that they were unable to survive periods. of prollonged cold like the warm-blooded mammads, and remainel largely at the mercy of thair envirotment.

So much, then, for the pelyoosaurs and therapsids who

Heralded the Mesoroic Eti, We must now return to the thecodonts, or "socket teeth", a group which, tithough not closely onnected with mammalian ancesury, is of overwheming importance to the story of the Middle Kingdom. For this js the group ancestral to the giant dinomitar who were to domentate the Earth for the next 120 million years.
As we mentioned above, the thecodonts stemmed from the primetive cotylosaurs, but they were taclding their evolutionary problerns in a botitly different way. We have just seen how some of the mammal-like reptiles were achicying greater etfrimacy on land by evolving legs set well under

 Upper Trindigit of Eturope
the boly instead of sprawlind out from the sides. The thecodont answer to the same challenge was largely to ignote the possibilitics of fout-legged progression, and to concentrate intasead on a highly speciallised devclopment: of the rear limbs. This cyentually enabled them to adopt in semi-erect posture, using the back legs for standing and runniag, and eausing the lore-limbs to dwindle to tiny wetigial arma that were not used for locomotion at all,

The curnivorous thecodont Soltoposwefer, which lived in Europe 195 million years ago, is a represcntative example of the's new reptilian rype. Like most of the group; it was a mall, lizard-like creature, lezt than four fotet long, but very
active. The hind legs were enmormously developed, while the rear part of the body was stapported by a long and powerful taid, The fore-legs were as insignificant in comparison as those of a kangaroo, but like all of its kind it always pregressed by running, never by hopping. Although so small, it bore a strong resemblance to the great bipedal dimosarts of the second part of the Mesozaic-

This ancestral relationship to the bipedal dinosaurs is tumistakable, but the thecodonts also gave rise to an infinite wariety of other reptitian types. These include pur modern crocodites, as well as the primative croodiles known as phytosaurs, and the Mesozoic pterodactyls, of "winged dragous'. 'The bipedal stance, therefore, athough the most characteristic attribute of the thecodonts, was ofter modified in other directions. The great variety of the dindosaurs alone is proof of the many diferent adapitations that were made-

Before going on tor diescribe the dinotatiots, we must conclude this chapter with a briefdecription of the background of the Mesomoie world. This was more varied, colourful and in many obvious ways more lamiliar, than the world of the preteding eras. The Permian rovolution had brought about sweeping changes in prentically every aspect of the Earth's geography, climate, and life. It had initiated atn fige that bringe us to the threshold of oomparatively modern times.

Gcologists divide the Mesozoic Era into three main Periods, referred to regpectively as the Triassic, Jurassic, and Gretaceous. The $\sqrt{\text { riss }}$ of these, which comes from the Greek word trias, meaning "three', is really a mistomer. It was given to the Period by the German geologist Freidrich von Alberti in $\$_{3} \$_{4}$ because in Gematry the Trissoce strata could conveniently be divided into three main layers. Later this was found to be a purely locil phenemenon, but the name has nevertheless been retained for Triassic formations all over the world.

The Triassic Peried began about r95 million years ago and lasted for 25 million years. It was suceecded by the Jurassic, which was first invertigated at the end of the dighteenth century by the famous British geologist William

Smith, Smith, who is popularly known as the ${ }^{t}$ Father of British Goology ${ }^{\prime}$, laid the foundations of stratigraphtic geology, the science that correlates rock formations by the fossils they contain. He labelled the Jurassic strata the 'Oblite scries', but it was later wehamed after similar formàtions in the Jura mountains, and Jurassic is now the name officiaily mapted.
The last and greatest of the Merozoic Periods is the Cretacoous, lasting for no less than خo million years, beginning 140 million years ago. The mame comes from the Latin ardes, meaning 'chalk', and war first applied to the strate now represented by the white clifts of Dover, and the corremponding formations farther along the coast and neross the Channel. Although most of the great chalk deposits of the world were laid down during this Reriod, chalk is by no means the only, of even the main, constituent of the Cretaceows strata. The name, like that of the Triassic, is therefore misleading but mow has the satection of long and general usage, and is unlikely to be changed.

From the early Jurassic palneogeographic map opposite at will be when how very different wore the boundaries of oceans and contiments to those shown for the far more ancient Cambrian Period on page 94 . The great land masses instead of rurning at today from north to sopth, stretched in broad irregular beits from weat to cast. The northern continentr were liteger, and the bed of the Notth Atlantie Ocean was upraised into a huge land mas known as Atlantis. Australia was connected by a land bridge to the disintegrating contiposp of Condwamaland, and a viast eastward extention of the Mediterranean into a sca called Tethys eut of India and Malaya from the rest of northern Asia. As is usual with the major cyclic revolutionw in Earth history, the Mesozoice began with wast upraised continents which were gradually worn down and covered by the advancing seas. In a more limited context, monntains wete also contínally being upraised and worn down, while towards the end of the Era an important revolution thew up the great ranges that were later transformed into the Andes and the Rockies.

In climate the Mesozoic cnjoyed an even longer and frome universal summer than did the Age of the Coal Forests. There were exceptions to this, such as an Australian ice capp at the end or the Jurassic, but such conditions were puturly local and searcely interrupted the danmatie and iressitible spread of reptilian life. The mildnego of the climate ath be deduced from the widespread presence of dinctatury alone. It is possible for smaller reptiles to survive short periods of cold by retiring to holes and hibernating, but the hage ginosaurs required perpetual warmth as a condition of their existence.

In the plant world there was a great expantion of more modern species, many of them typical of a mild and hospitable climate. In the Petrified Foitest ai Arizona the munks of conifery 10 feet long tell of the triumph of the Triassic trees over their giant andestors of the coall forests. Ferns, tree ferns, and scouring rushes continued to tlourish, but there was hardly a aurvivor of de proud Carboniferous scalo trees and Cordailes. Instead, from a sombre background of evergreens, there blazed forth the first brightly huod plants in the world, These were "flower cones' belonging to the exotic paltr-like cycads, characteristic trees of the age of the dinosaurs, whose pettified fronds cats still be dug ont from the cliffs at the English senside resort of Scarborough.

In the Juressic forests, amony the pines, there were sequoias, and ginkgos, or maidenhatr trees, whose desendunt flourish today, almost unchanged after 150 million years. Ferns and cycads covered the open slopes of the hills, and rushes fringed the swamps where the semi-aquatic dimbshurs wallowed in lazy contentment. By the Cretaceous the first deciduous trees had appeared, and there was a rapid spread of the true flowering plants, or angiosperns, which we shall be describing in a later chapter. The landseape was dotted with the famitiar shapes of poplars and planes, and the watm spring air was filled with the hanting perfume of magnolias.
The end of the Mesozoit Era thus bringa us to the thereshotd of the modern world. Yet, despite the growing

Gomiliarity of flowers and shrubs and trees, the dnimals of this time were some of the stringest in the whole procesulion of Hife. Nearly all of them were reptiles, who had grown from humble beginnings at the dawn of the Mesozoic jato the most waried and extraordinary dymasty in the Earth's history. In the next few chapters we shall descrilbe 駺酐 of the more remarkable of there rtighty reptiles who dominated the Earth for so long. We shall speak, too, about the origin of the birds, and the further advances made by the strange reptile-like mammals. Finally, we shall sece how the reptilian dynasty roarhed ite climux, and how at its close the Eiest true mamuals at long last came into their own.

CHAPTEEIG

THE DINOSAURS

No animals of the past hawe 30 completely captured the publie imagination as the giant dinosalurs of the Mesoxoic. Such creatures as Arorlosaurnf, with ite massive body and long, snake-like neck, poer regularly from the pages of children's comice and strip cartoons, and mext to Martiant and $\begin{aligned} & \text { phace chips are the mose essential ingredient in that }\end{aligned}$ strange literary phenomenon known as "science fiction". Even the commerial world has been unalie to resist the lume of the dinotaurs. They are a stand-by for advertising agente on both sides of the Athantic, and int recent years have equalted the most glamorous film stars as a box ofice draw at the cincmas.
In view of this immense popularity or, perhaps one should say notoriety, of the dinotasurs, it: is odd that they atre still the subject of so many misconceptions. Artists and eartoonitt who depiet them as a serious publie nuisance in the Old Stone Age, continually on the prowi for an unsuspecting cave man to carry home to their young, thate very for froth the truth. Dinosurs were extinct po million years belore the first tuen appeared on the Earth, ind were in any case latr too uninteligent to be a serious mernace to any teasonably active mammal. The ider that they were alway monmous and uncontrollably rapacious is also greatly exaggerated, Despite the public determination to bave ite dinosaurs as large and ferocious as possible, many of them were small and comparatively inofensive

This is not to say, of course, that there were no lange temiverous species anong the dinopaurs, nor to belintle. their well deserved reputation the the most spectacular eroup of animals in the past history of the Earth. But the great onsivores werc restricted to a dew species of one particular group, and the wast majority, cwen of the latger dinotaturb, were as timid and docile as shecp. Quite apart from the
large dinosaurs, whether carrivorous or not, there wat a far larger assortment of conixp asatively small and inconspicuoliz forms, ranging from the size of a barayard rooster to that of an ordinary domestic horme.

Fant of the responsibility for the many misconceptions abbout the dinosaurs dutes back to the nineteenth century, when the group was named by the famous British anatomist Sir Richard Owen, At that time only a few of the lateger Forms were known, so Owen placed them together in a single natural order with a name based on the two Getek words drivor, meaning "huge', and sacus, meaning "lizard', or "reptile". When an ituereasing गumber of small forms' was discovered the name was seen to be inappropriate, but for turately the other trancistation of denor, whith is "tertible", provided as satisfinctory alternative. The name dinoshur is therefore now generally regarded iss meaning 'terrible reptile' - and no name could mote aptly describe the many bizatefe forms, large and smath, of this inerediblle group of amimals.

Anotlicr mistake made by the early investigators was to place the dinosaurs together inte a singlic natural order, It is now realized that there is not one group of these reptiles, but two, the distintion being bated on the bones of that part of the body known to anatomists as the pelvic girdle. It is not necessiry to go trito eechnicalities here, but we should remember that the two distinct types of ditholars, known reapectively ${ }^{3}$ the Saurischia, or "reptile hips", and the Ornithischia, or 'bird hips", differ as much feom each other in theie atanomy as do, say, the horses and cows of today. The word dinosaur has therefore survived bocause of convenience and long-established usage rather than any special acientific significance.

The two orders of reptile-hipped and bind-hipped dino gaurs stemmed from the small and agile bipedal thecodonts that we described in the last ehapter. They were thus the cousins of the crocodiles, phytosaurs, and pterosaurs, and only remotely connected with the mammal-like reptile who were eventually to give rise to man. We must repeat,
however, that they had wolved in a most effecins way of their own the basic reptilian problem of getting their bodics off the ground. All the wril-known carly dirosaurs of she Mesozoic walled or ran on their hind legs, and even when some later forms returned to a four-legeged gait they had progressed far from the sprawling, limbering crawl of their distant ancestors,
The diutribution of che dinosaurs was apparently worldwide. Their remains have been found in every contiment, from the north of Europet to the southern tip of Mrica, and from the cast of Asia to the great dinosiaur beds of the western Urited States. This last region, which covers an arch of 100,000 square miles in Utah, Wyoming, Montana, Colorado, and New Mexico, bas been the source of nearly all the important New Whorld dinosaur fosill of the Jurastic Period. The New World dinosmurs of the Gretacerus hawe mainly come from the racks of the Belly River formation in Southern Alberta, Caniada, while in Europe there have been many :mportant finds frem all the Mesozoic Periods in France, Belgitm, Gerruary, and especially in the British Islex. It is odd to thiph that some of the strange creathures we shall shortly be deseribing once made their homes where now stand such farniliat towne as Hastimg Bambridge, Peterbopough, and Weymouth.

The dino ianiss first appeared in forse during the earliest of the thetee subdivisions of the Mesoroic Era, the Triassic. By the middle of ebis Period they already outnumberd all the other kinds of reptiles put together. Compared to some of their successors, nome of these early dingegurs was pirticularly large, the maximum length being ten to fifteen feet. The great majority retained the thecodont habit of progressing in a semi-crets posture entirely by the use of the hind legs; in fact they were an obvious derivation from such creatures as Saloporuchus, which we described in the previous chapter.

Towards the end of the Triassic larger forms began to appear, and in the European saurischion known as Platesfactur we see the prototype of the giant carnivores of the
later part of the Mesozoic Era. This creature measured some eightern to twenty feet from hofe to tail and walked erect on its hind legs. At the time that it lived there is believed to have been a marked seasonal elimate in Exrope. This has led the German palaeontologist Baron won Huene to draw a graphic picture of great hordes of plateotaurs migrating with the altemating periods of drought and rain between the fertile deltas of the coast and the woodid uplands of the interior, with their rich vegetation of coniferous trees. He believes that many plateosaur [assils originated in those animalts whe fell by the wayside ith the arid deserts that lay in the path of their march.

With the end of the Trisssic the dinosaurs began to enjoy their heyday. The terror of the succeceding Period was the giant American carnivgre Allosaurall, which was over bhithy feet long and was equipped with thick sharp claws and wicked saluretike peeth, At the other end of the sale was the Etaropean dinosaur Gompregnotuse, a gracefol and delicately made lietle ereatute no larger than a small kapegatoo. Also prominent at this time was our old friend Brontonenmers, the "thunder lizard', and his even more gigantie relatipens, Brachandaris and Diplodonfr. These sattropods, as they are called, had reverted once more to a four-legged gait on the rare occessions that they wentured forth from the security of their tuative swampas they measued between sixety-live and eighty-five feet long and had an average weight of over forty tonts, Nevertheless they were harmless. yegetariants, who had taken to life in the water to help thert support their tremendous bulk. We can deduce the acquatic habist of de sauropoils from the digtribution of weight in their bones. In several species the bone in the upper part of the body was corsistently light, while the rest was omparatively heavy, suggesting that it served the same purpose as the lead in a diver's, boots = that is, to proserve stabilisy in the water. Again, several kinds had their noserib on the crowns of their heads, so that when danger threntencd they oould still breathe while keeping their only too conspicuous bodies almost entirely submerged.
F. One of the mostremarkable features of thea huge atuintats, as of their flesh-eating retatives, was the dimimutive size of their brains. The dinosaur brain oecupied a tiny recess at the rear of the skull, and its sole fonction wass probably to work the jaws and recejve general seratory impressions ats to the whereabouts of food and the imminence of danger. The giant samropods had in addition as swelling of the spinal cord at the base of the vertebral columa which acted ass a seoond brain. This was many limea latger than the true brain in the head and was responsible for working the muscles of the hind leps and taid. A journalist narned Bert $\mathrm{I}_{\text {a }}$ Taylor on the stalf of the Chinge Triburne was ingpired by this fact to record his reactions in verse:

Behold the mighty dinetaur.
Famous in prehistoric lores.

Buif for bis intellectual ledg th.
You will observe by these remains
The ereaturc had two sees of braids -
One in his head (ule usual place),
The other at his ipinal bate.
Thus be conld ressod a priorl
As well as it pasimioni:
No problem bothered hisp a bict
He made bolh head and tail of it
If something slipped bis forward misad.
"Twat rescued by the one behied.
And if in error he way catught
He had a saving wethoughl.
Thut be could think without congextion
Upon both tides of every question.
Oh, gave upon this modell beat,
Deflinct ten million yedrat least.
It is probably truer than the author realized that "now problem bothered him a bit", but this is not due to the duplication of the dimosuar's brain bout because meither brein was sufficiently developed to have any capacity for rational thotght. This was a limitation that applied as much to the flenh-eating dinosaur as to the vegetarinis. Thus the
typical carnivore of the Mesozoic did not stalk its prey in the deliberate, purposeful manner of the more advanced mammals of today. It probably lived in a state of constant receptivity for unusual sounds or movements, and would then rush in the direction indicated by its senses with a kind of instinctive hunger and blood lust, killing blindly like an automaton without any particular sense of pleasure or excitement or rage. To us there is something especially terrible in these passionless, instinctive murders, so far removed from the more sophisticated thrill of the chase which characterizes mammalian hunting and is still a potent instinct in man himself.

So far in this record of the dinosaurs we have only mencioned members of the Saurischia, or 'reptile hips', but before gaing on to the last Period of the Mesozoic, the Cretaceous, a word must be said about a typical member of the other great order, the Ornithiscia, or 'bird hips', who exemplifies in the highest degree the limitations of the dinosaurian intelligence. This was the Jurassic dinosaur Stegosaurus, a ten-ton, thirty foot long quadruped, found in both America and Europe, with a ridiculosuly small head and a huge body surmounted by two rows of tough but loosely mounted bony plates. Slegosourus had no less than three brains, but despite its size their combined resources were inferior to those of a present-day domestic kitten. The brain in the head was the size of a billiard ball, while the additional 'brains', or enlargements of the spinal cord at shoulder and rump, although larger than the head brain, had the purely functional purpose of controlling the movernents of the legs and tail. The failure of Segosaurs to survive beyond the end of the Jurassic was a warning that undue concentration on size instead of brain was no way to avoid the threat of extinction.

The last 70 million years of the Mesozoic, which constitute the Cretaceous Period, saw a more fantastic array of extravagant forms that even the two previous Periods had been able to provide. Here indeed the dinosaurs enjoyed the Indian summer of their spectacular career. Horned
quadrapeds such as Triceralopes and Slyracosoartir ranged aerose the uplands between the steaming swarnps, and the Earth wat terrorized by the greatest land carnivores of all time. Along the shores of the estuarica stramge duck-billed forms sudh as Aralorarys and Parabdurolophis made thcir appetraince, and there was a fabtastic new group to whom the burden of his own armotlt, and the extreme grotesqucnese of its bony ornamentation, was aleady in grim portent of prer-specialization and extithetion.

 and North America

The predators reached their apotheosis in Tyrannorannat pex, the greatest of all earthly carnivores, who strode acroas the land spreading fear and destriction in its trainn This fantastic reptile measured over forty-five feet from nose to tail, winh a grotesque skull equipped with a battery of teeth three to six inches long and an juch wide. Ite macabre and loathoume aspect was increased by its broad ahors reck and the tiny westigial lorearsas which humg down utelessly fromi itz massive chest.

Another facinating dinobaur of more modest size was Sirutiominurs, the "ostrich mimice, A glance at the retonstruction on page opposite will show at once how it got its name. Its neck and lega were long and slender, and the small
skull had toothless jaws, suggesting that it may literally have lived by sucking eggs. Ineideatally, the most perfect. skelewn of this dinotaur, preserved in the American Museum of Natural Histary, shows xigns of death by the spesmodie convulsions aksociated with tetanus or strychnine poisoning. We cannot say for certatu ir this was so, brat it suggests a fascinating posititity, and the twisted skeleton helpm us more than suy words to evolke one aspect of the huzards of this strange world of do of more million yeare ago.

Siruthomimut, the 'atich moimic'
Onc well-known dinosaur from the Gretaceous strata of Europe is of particular interest to w, as it was among the very first at these extraordinary creaturem to be scientifically degcribed. In than the wite ar lie Gideon Mantell, the eminent qurgeon and palatontologist, found some peculizr teeth in the lower Cretacesol rocks of Susex. Mantell was at a loss to identify them and sent them to Baron Cuvier in Paris, who maintained, most inacourately ns it turned ont, that they were the teeth of a shincraros. Eventually, after discovering lurther remains, Mantell hiwnelf dereded that they belonged to an entirely new kind of extuct gitat peptile, whith he named Igwanodon, Much later his decision was
dramatically confirmed by the discovery of sevemteen nearly perfect Igandifa skelotons in a conl mine in Belghum. Iguatudon with a large bipedal type, walking erect with its head about fineer feet from the ground, like a strangely misthapen lizard. It was a hammless treature, browsing on the vegetation of treed and bushes, and at some of the excavasions there could be clearly seen the impeint ofits tail where it sat down at intervals on the ground to rest.

An interesting fact that has been leatnod from a study of

The gian biperdal dinonaur 4 fumpan
the Cretaccous dinosaurs is that at least some of them repeoduced by laying eggs. Examples of reptoduction both by eggs and by the direct birth of living young can be found in differeat cypes of rooden reptiles, but the behaviour of dinosurs in this respett was for many years unknown. Then an expedition to Mongolia, sent owt by the American Museum of Natural History with the purpose of locating new remains of fossil man, discovered instead a number of wellpreserved nette and eggs of the smaill horned dinosaur Proloatratobs, together with one example of an unhatched embryo. This irriportant, il unexpocted, discovery did not of courte prove that every type of dinosaut laid eggs, but it did an least
remove our knowledge of one species from the realns of speculation.

As the Cretactous wore on, grim portents began to appear of the dinosaurg' extinction. These were expressed in the development of several fantastie sind over-agrecialized forms whose growth bore no relation to any effective evolutionary purpese. One example was the grotesque armadillo-like animal Polorixthus fori, from the Isle of Wight; another the: even more heavily anmoured Amerivan dinosaur Scoloseunsis a squat, flat, and hideously repulsive creature that looked like a dantastically omamented tank. The dangerous tendencies exemplified lyy these ereatures reach their climax

 in lue life ot Wight ag gitillion yeff ast
in another small American ditugsur called Trudida. Truphen was literally "bone-headed', the skull consisting of a thick wall of solid lone covered with ann exuberant growth of spikes and ossicles of near-phthological origin. Despite its hidcousness we camot withtold our compassion from this gropesque and pathetic litule dinciaur, destined by nature for a brief struggle on Eath, followed by an inevitable and meatringless extinction.

With there layt bignere emperiments of natural selections the dynasty of the dincsaurs eame to ane end. "This fantastic group had ruled the land with unbroken suceses lor ower 120 million years - the longest period of domination to be enjoyed by a single type of creature in the withole of the Earth's history- In a later chapher we shall destrilue the may have been responsible for bringing it about. Hut first we must retrace our steps for on moment so calk about the reptilian monsters of the Mesoroic seas, and the first attempt by vertelorate amimils to make the conduest of the ait.

©HAPTER 17

THE RETURM TOTHE $\$ \mathrm{EA}$

I't was not only on land that the giant reptiles held sway during the long aeons of the Mesoxaic Era. From the time that the first oftposte of the Gectel Invations had been firmly established, and given rise to those anecstral reptiles, the cotylotaurs, several groupar wexe alterdy explaring the potsibilities of' a return to the sca. Although superficially this might secrin like a retreat, such was not really the cesc. Rather it was a re-invasion of a familiar tersitory with the adyantige of seweral million yedro of evplutionaty experience. In lact, the great sea reptiles of tive Mesoroic achieved the same succest in their own chosen element as did their dinosaur relatives on land.

During the finst part of the Permian Feriod, and perthaps even at the end of the Age of the Cod Foreats, sowerall kinds of primitive reptiled were already beginning the return to the water. These belonged vo a family known as the meson saurs - acture, slimaly built litule ereatures which seldom messured more than two of three feet in lengeth. Their remains are found in the rocks of 审auth America and Sputh Alfiet but nowhere else in the world, atnd palapontolegiste Beliewe that they were probally fish-eating torms who lived mainly in fresh or brackisla water.

With the dawn of the Mosozoic Era itself, an incorcasing number of reptile joined in the re-mination or the sea. There were primitiwe turtes, as yet unable to withdenu theit heads and lege into the safety of their shells, and a group known as the placedonts whe had evolved enormotersfan uect's to help them crush the shells of modluses. One group, known as the nothosaurs, made only a partial readaptation to aquawie life, and probably spent part of their time running over the incertidal rocks, or paddling in shallow water.

It is important to realize that to make the change-ovet from land to water lifen involved great probleme for the
reptiles. It was not simply a question of losing the adaptitions they had previously acquired whent their anectors left the sea; they had to start all over again. Ore of the findamental laws of natire is that evolution never works in reverse. Thus no arimal that has ever come on land can equip itself a second time with typical fish-like fins. It must readapt is land limbs of taill to perform the same function in it different way. Otten, of course, the new structures bear a muperficial resemblance to the old, as in the "fins" of our present-day mammalian porpoises and dolphins, but anatomically they are built on a totally different plan.

So far we have only mentioned the first tencative efforts of peptile to return to their ancestral waters before they had prescrited a serions challenge to the fisth, but by the end of the Triassic there wat mo longer any doubt that sea reptiles were in the ascendant. The metostavers, placodonts, and nothosaurs had been xeplaced by mighty occan monsters, every bit as fantastic and awc-inspiring as the leviathan and the great sea sarpent of popular imtigination.

The story of haw the fossil remains of these rulers of the Mosozoic deep were first discovered is as romantic as anything in palaeontology. They were found not by a learned scientist, nor by a bard of entlusiastije research workers on a Museuri expedition, but by a young girl born in the lagt year of the cighteenth eentury at the English south coast town of Lyme Regis. Her name was Mary Anning, and her father was a johbing carpenter whose hobby was picking up and selling the temains of ammonites and belemnites which he found on the sea shore. As we said in an earlier chapter, these fossils are very comanon on this part of the Dorset coast, and have always been much prized by touriss as curios. Mary Auming used to help her father in his work, and at his death in 1 Al:o, was allowed by her mother to continue, for her eflorts enabled the now irrepowerished fanmily to make a Jitle extra money, It the following year, when she was still only twelve years old, she made the first of several dramatic finds which were to bring her international fame. Working
with laer sock hammer f. Eew fundred yards from Lyme churchyard, she exposed the bones of what she chought in her innocence to be an unusual species of erecodile. It was, in fiter, the first skeleton ever to le discovered of an ichthyosaur, or "fish reptile', one of the laureat and test known creatures of the Mesorobic seas.

The skelecon was purchased by the local squite for the princely sum of fis and eventually found its way to the British Musenurt. Its discovery was hailed by geologists with the greatest imterest and enthusiasm, and when dhe litetle girl grew up she was encouraged to embark on the career of it professional fossil hunter. Stue seemed to lowe an utherring instinct ass to where the fossils eould be found, and Inpidly unearthed several further ichathosaur skeletons, including one meataring ower twenty-four foet lang. But perliays her greatest triumph wast the diecovery in 5 Bat or the remains of the extraordinary sca reptile Plestowatus, an Eycul which threw the scientific world into a fever of excitement. As if this were not enough, she fouthd, in ited, one of the craliest examples of a pterosaut or, in popular janguage, a 'ptero= dactyl ${ }^{1}$, one of a damous group of dyring reptiles which we shall be discussing mere fully in the fext chapter.

Fittingly a picture of Mary Aoning now hangs in the Fossil Reptile Gallery of the fritish Museum, surnounded by the akcletons of the great Mesozoic reptile that she was the first to discoves. The portrait shows a comportable middle-aged woman of antrele proportions with a pink complexion and humorous cyes. She wears a green eape and a poke bonnet, and her black and white dogs the faithful companion of all her expeditions, lies by her side. In her band she clutches a geological hammer, and a basket for specimens hange from her right arm. As one studies the picture one cannot help ferling that the matronly figure would be more at home it a farmer"3 kitchen, oir the parlour of an inm, than on the bleak eliyf face among the skeletote of primeval monsters. Yer Mary Amming won the respect of every famous geologist of the ninctemeth century, not dxcepting the great Baron Cuvier himself, and her fietnly clasjed
hammer was the means of carving For herself a special niethe in scientific history,

Turning from Mary Anning to her famous digcoveries, we find to begin with thite the ichthyosaur bears litthe telation to any of the typieal reptiles we have so far described. In lact, if we hat come on the skeleton without any special scientific krowledge, we should probably have described it as that of a huge fish. The body, which was from twenty to chisty feet in length, had the corpedo-like streamlining of a typical aquatic amimal, while the head was equipped with a Jong pointed snout, well saited to cuttimg through the water. The limbs had completely lose their original reptilian power of progresgion on land, and had evolved into highly specialized lim-like flippers.

More recently disoovered ichthyosaur akeletons from Hollanden in Germany have preserved the outline of the soft parts, which show many other obvious simularities with the fishes. For instance, there is atysh-like tail and a fleay dorsal fin which, al chough unsupported by bone, is effeciently adapted to its underwater function as a stabilizer. The body outline bears an obviows resemblance to our modern porpoises and dolphins, aquatic mammals who fitlil the same function in the present comomy of the seas as did the jochthyosatur 100 diallion yeears ago.

Apart from their general fisholike shape, ichthyosate skeletons are easily identifable by several other fatures. For instate the huge eyce sockets are rembrest round the circumference with hatd bony plates, while the backbone appears to be broken and bent downwards at the rearwand end. For meny years palaeontologists believed that this "broken back' eflect was due to disturbance of the skeleton affer death, and several early specimens were mounted with the backbone artificially straghtened out. It was later xenlized, howeyer, that this seeming break wat a natural deflection of the backbone into the lower lobe of the tuil, where it provided support and assisted with the swimming mechanism.

The extreme adaptations made by iebthyosaus for marine
life, and the uselessmess of their rin-like limbs for land progression, shows that they must have reprodnced ins the water. It therefore seems likely that thear young wese brenght forth alive, without going through an intermediate stage in an extemal egeg. "This theory is supported by the discovery of several skeletons containing the reroains of baby ichthyosauts. It was once thought that these must be the bones of accidenallly eaten young, but as in every case young and
 likely that their association is due to death in childursth. In some instances it is possible that labour had qaken place after the deatls of the mother, a phenomenon lor which there are several mammidititn paratlele, even atnong human beinge.

The main rivals of the ichthyyuaprs for the domituition of the seat were the still larger and more fantustic plesiosaura, whose remins were also first discoucred by Mary AnningThe name plesiosaur means 'near reptile', for 't was once thoughe that plesiosaurs were ereatures evolving inte veptiles from and carlier group of aquatic animala. This is of course incorrect, and plesiosaurs are now known to be true reptiles who branched off early in their history from the ancestral land-dweiting stock to return to at water-dwelling life.

The typical plesiosaur had a thick, barrel-shaped body, it there tail, and an cxceptionally long neck. The largest specimens measured bewoen forty and fitty feet long. Undike the ichthyosaurs, they were unable to progress by Eish-like undulations of the body'; they rowed themselves along the surface of the sea by means of their four paddle-like limbss telying less on speed than manc土uvrability in the hunting of their prey. The great length of the nocte muta also have been a valuable aid. In one Cretaceous plesiosaur known a at $^{\text {a }}$ Elamorumss the neck contained seycritysix vertelifate, and measured wo less thitn twerty-three feet long - considerably more than the whole of the head, body's and tail added together.

Besides the long-necked species there were offter kinds with shorter riecks but disproportionately lang skulls. The
best lenown example of this type of plesiosaur is. Pligetourmar, whose remaine ate common in rock formations near Oxford and elsewhere in England. The typical plifosaut skull, averaged from lour to six feet in length and was equipped with a batery of shatp teeth, indicatiog extremely aggeresiwe and predacious habits. The pliosaum reached their park in the Cretaceous Period, when one fustralian specieg known as Frpmotisus deviloped a skoll over three yards long.

Despite the spectacular aspect of the different bind of ichthyofanire and plesiosanars, the last and enightiest of the sean dragons had atill en apprar. These were the jximasaumat a tribe ofgigantic predatars who were to domithate the world's oreans lor the last so million years of the Mesozoic Ers. The name mosatar meant "Mense lizatet", from the old Roman word lor this Duteh river whate the first remains of the creature were Found. As long ago the the eightenenth century, modaraur bones were causing considerable exatement in the neighbourhood of Masstricht, and a skull Found in I 7 joc by a certain Dr Hoffman is the subject of an entertainimg anectote. Hoffman. had apparently found thit skull in a quatry belongitg to a local priest marned Godin, and had spent minch time and moncy is having in dug ont. Unfortunately whee it was andely meavated and removed to Hoffran's home, Godin decided ihat it was hes and brought an actien for its reboury. As a landowner and ectediastic he seems to have won his case with litule difficulcy; the skull was returned to him, and there for the moment the matter rested. A tow yeate later war broke out. The fame of the skull had by thir time spread far and wide, and the general of the adwancing French anmy, being anxious to enhannec his prestige, wal considering how he rnight atoquire so unturual a prize for the glory of the Fepublic Ancordingly, when the town wat inverted, he gave orders to his attlilery that on no acoount was Godin's house to be shelled, for the tnosasaur mast be preterwed intact and taken an a trophy of war io Baron Cuvier in Paris, Unfortonately for these welllaid plans, when the moldiets broke the defented and arriven
at Godin's house, thether priest not mosasaur were any* where to be found. Obviously Godin had got wind ot the plary and dectamped with lish ereastre to a place of sadery. This placed the soldiers on their mette; the homour mot only of the genersal but of the Republice was at stake, and each ran determined to be the first to lay his hatrds on the stulll. Just in ease honoter failed, Citiven Freicine, who had been put in change of the alliaie, offered the added inducemene or a cewtat - not moncy, of coruse, whieh would have been a base prize in auch at case (and anywny a somewhat tintecti= nble astinetion in time of war $]$ - but boo bottles ol the finest Alentian wime. Thete tactics worked like magic, Withift urelve hours of the anouountament of the reward, Preicine was told that the doweted skull had been bronght into military $\mathrm{H}_{\mathrm{n}} \mathrm{Q}$. Hy it persping platoon of soldiers. "Ihus honour
 gassured, and finally fand we minst hope not os too much of
 the finest and most interesting skill ever to be offored to the Intitikute of France.

The first investigation of the mosasaur skull ded in fact revey a creature fally in kecping with the legend buthe up by its romantie hiatory, This ltmpersion was confirmed by new disoweries of boome, and palteontologits soon had a cormalete pistute of this extmordinary aca didgon. The larger specimens retwhed a tength of forty foet or mone and were shaped like gigantic lizards. They must have been able to swifn with great sperd and power, proptling thenselwer forward by they massive tails, and using their fippers as stecring and balancing organs. Superjeially they bore some xescimblance to the ichthyorames, bat in reality belonged to guite a difterent group, They wete troe lizand, with scaly skins and loosely jointed jow, whinh cmabled therin to swallow exceptionally large prey. "The limbs wete sumple fiwe fingered fippers, far less well adapted to equatic lite than the ichthyositurs' fins or even the plesionours' paddles. Yet despite these primitive charatteristics the mostownors were undoubtedly highly sucsesseul marine pectlatory who were
more than a match for asy of their formidable comperitors in the seas.

Althongh those creatures, and the others diseuwed earlier on, represent the most dramatic examples of aquatic lite in the Mesoroie Era, we cannot conclude this chapter without mentioning a Eew of the moe lamiline typer of water refperiles that lived at the same time. Dharigg most of the Gretaceats Period there were giant form of several creatures whose smaller relatives hive persizted until today. For example, there were the great marine turties of North America, especially the extraordinary Prototego, or "Hest ropt, whese Fossil remains wee discovered int iBjo by the American palatontologist \mathbb{E}. D. Cope. The skeleton of this lauge reptile was first seen projecting from the ledge of a low bluff in wesken Kansas, and, when excawated, was found to have a type an anatomy previously quite unknown to science. Twenty-five yeas later an even larger marime turtle was discovered. This was the great Archelon, which measured over twelve tert long and in life must have weighted at Itast three tons. It had a large, parmet-like beak and probably inhabited the beds of the shallower seas, where if lived on shell fish. One skeleton of Arctelar hats ljeen found with the right hind flipper bitten of well above the heel - evidence of a narrow, deape from some marauding' mosasasur.
Apart from the turtles, the most intereating of the more familiar reptile were the crocodiles. All ernomiles lanve a somewhat prehistoric looky and even our more modern prrieties would have fitted very well into a world where. plesiosaurs and mosasaurs ruled the oceans, and dinosaurs wallowed lazily in the swamps and edtuaries. In the later part of the Junssic Period marine crocodiles were çute conntion in Eurype. Of thene the best known was Geosuirwit an odd-looking creature with a prined snouk and a long narrow body and tail. But the most remarkable Meoboic cropdiles occurred at the end of the Crepactous, when they achieved the same gigantic size as the other creatures of the gea and landin thege atutumn yoars of the reptile dynasty. The Gretaceols crocodiles were not marine forms, but
infested the istuaries and lower teaches of the great rivers where there was a sith supply of the clumsy and slowwitted dipotatuss for them to foed on. A typieal exnmple was Phobptitwetw, the cast of whose tkull in the Natural History Department of the British Museum measurcs stix yect three inches long, and just under four feen lbroad. A living specimert of this giant among crocodile must have measured roughty filty foet from nose to waill, which is longer by nearly twerny fett than the largest reportled crocodile of tod ay?

By the end of the Mesozotic. Ert these huge aquatic chrnivorts of the etuarics and the woracious mosasauts of the open aeas were enjoying the satne doribation in their chegen erviromment as the great ditiosaurs on the Jand. The return to the sea, it seemed, had been an unqualified success, for none of these reptiles could know that their wery concentration on size and ferocity wis leadisir imevitably to theis own destruction, After a bitel chapter on the vertebrate conquest of the air, we shall dexeribe this catastrophic climax to the aaga of the Mesoroic repiles and athe various explanations that have been put forwritd to explain it.

©HMTER I 3

THE CONOUEST OF THE AIR

The problem of flight was solved by invertelycate animals quite esrly in the history of life. There were flying insects as far back 黙 the Dewonian Period, and the Carboniferous coal forests abounded ith ginn dragon-flies and filying cockroaches. Yet elhe full conquest of the air by the higher animals was prostponed for over too million years, and no vertebrave had achieved the power offlight belore the Mesozoic Era was well advanced. The most succeasful early pionects in the cnd were onces again the reptiles, but they were eivalled and eventually surpassed by their close relations, the first Yeathered birds.

The Mesowic flying reptiles belong to that fantous group of extinct animals, the pterodactyts or ptorosaurs. These made their appearance ina the Jurassic Period, aboue 1 (Go mullion yearg ago, and theit remains werc first diacovered in the lithographic atone of Solenhofen, Bavaria, in at thy. The bones diservered at this time belonged to a single skeleton, which was at first' thought so be that of an amphibian. However in $\mathrm{B}_{\mathrm{B}}^{\mathrm{g}} \mathrm{g}$ Haron Cuvier identified it is belonging to an extinet genus of flying reptiles, and proposed that it should be named Puradacyiwt, or " wing-finger". Two docade later, in 1828 , the first liritish pterosan whas discovered at Lyme Regis by Mary Auring, and the investigation of its skeleton by the British andomist Sir Richard Owen was one of the earliest important contributions to our knowledge of the tace.

The flying reptiles were descended like the dinosaura From the bipedal thecodonts, but followed a quite diferent line of developmens. We have teen how in the dimosaurs the disuage of the forelimbs for progesssion caused these in many eases to dwindle to tiny vestigial arms. With the pterostuter stock a quite opposite kind of transformation occourred. The forelimbs remained strongy and well-developed, and one of
the fingers graduaily evolved into an imemensely elongated 'boom', supporting a bat-like membrane knowth as a patagiuth. This primitive wing stretched from the elongated linger to the animal's thigh, permitting a somewhat precatious sort of gliding flight, As the creature begnn to rely more cormpletely on its wings, the गear limhls Lectame reduced in size tentil they were quite unsuited for walling on land.

Other specializations for flying arecurred at the same time. For instance, the breastbone was greatly strenghened to prowide a rigid point of attachenent for the muscles used ins Plight, white the tail developed a fin which helped to stabilize the body in the air. To reduce weight, exceptionally large canvities evolved in the skull, snd the liones of the skeleton became hoflow and filled with air like those of modem birds. Such modifications caused the body to become progressively lighter in proportion tr its size, so that a pterasaur widh a threc-foot wing spari is estimated to have weighed litule more than hali a pound.
In addition to the discovery of the fiest British pterssaur termains at Lyme Regios some more exceptiomally valuable finds were made in the Ravariand lithogrenphic stone. These beds were apparently formed from the deposition of fine sediments in ancieme coral reeflagoons, and they have preserved the outlines of sucly delicate straturtes as jelly-fish1 and bird feathers as weil as of pherokur wings. The stente revealed many newe cxamiples of the genus Placodoty)w which, under ite name of pterodacty, has become the popular symbol of the whole group. Contrary to gencral belief, the majority of these pterodactyls were no bigger than sparrown, atthough some specinent grew to the size of large hawls. They probably ford mainly on instects, and the structure of thitir feet suggeots that they wert able to hang upside down like bars. The bones of the skelefon were exceptionailly fine and delicate, some measuring no more tlaan a millimetre actoss.
A larger geniss of ptercsawisy with the imposing name of Phamphorthenchus, meining 'prow beaked', also citue from
the Gefman lithographie stone. These were characterized. by long straight tails terminating in diamond-shaped fins for preventing pitching in flight. The wing span was about thitey inches, and the jaws, like thote of most early pterosaurs, were equipped with an array of sharp, forwardpointing teeth.

It is signiflenm that all the remains of pterosaurs so far found have occurred in deposits laid down in estraaries or below the surface of the sea. This suggeste that they inhabibted the coase and lived mainly on fish or insects caught on long gliding expeditions over the water. Their widg were ineapable of the flapping movernents typical of bieds, and they must have used considerable ingeruity to take advantage of the wind and rising air currents when fir out from tand. If a sudden calm fell they would have had great differulty in maintaninit cheir height, and many were prob= ably drowned. Rough weather was also cxtremely dangerous to them, for once either of their elongated fingers hat been fractured by an sudden gust the wing structure would completely collapse. The fying mochanisin of pterosauts was thes greatly inferier to that of the birds, or ever of the bate. Binds can lose several feathers wilhout scrious consequences, while the bat's wing is supported by several digits for additional strength.

The plerosaturs so far discused all belonged to the Jurassic, but the giant of the tribe did not appear until the following Period. This was Pteranodon, ot "toothless wing", so named from the tact that annong the evolutionary charges that had taken plate in these later pterobaurs was the elimination of teeth and the developthent of a bird-like beak. Other charges induded the redwetion of the tail to a comparatively insignificant stump, and an great increase in size, osresponding to the development of the Cretacenus dinosaurs on land and the ginat mosasaurs in the seas. Plefundodon was, in fact, the largest flying animal of all time, with a wing span of between twenty and twenty-seven fret.

In addition to ats giganuic size, Puranodor had several other highly distinctive features. Prominent among these
was the great bony projection extonding from the buek of its head to counter balance the beak. "This was almost as long as the beak ittelf and added to the creature's already macabre and sinister appearance. Another characteristic feature was the atmose complete uselesiness of the lower limbs. These were quite inindequate for any form of land progression, and it seems likely that Plerandom spent most of its time soaring over the sea in seasch of fish, Hike a modern albatross. When it alighted on the ground to rest, it probs ably supported isself awkwardly on its elbown ite wings spread ouf bethind it like a partly unfurled umbrella.

The flight of the pterosauts poses some interesting physiological problems. The prolenged atrain of any torm of ferrial progrestion presupposes a high rate of metabolism, which is not normally asociated with cold-blooded reptiles. This has led some authorines to suggest that all the pterosauts were to some extent warm-blooded and had a circulatory system that showed great advances over that of their land oclationsBut even if this was so, it proved inadequate as an instrument of evolutionary survival. The pterosaurs, like the great reptiles of the land and sen, became extinct during the period of revolutionary clange that brought the Mesozoic Era to its cndl.

Another gencral problem of great interest is what catued the ancestral pteresaurs to attempt flight at all. The wings themselve were obviously an evelutionary advantage to their owner, but the circumstances prompting their growth are still obscure. Two main theories have been proposed. The first is that the connecting link between the theoodonts and the pterosaurs was a tree-dwelling formb, probably not unlike the small Cretaceotes dinosaur known as $/$ Iypuilanhodon fori. The wing membrane might hawe developed in such a ereature is a primitive aid in jumping or planing from bough to lrough, or patachuting from bigh trees to the bushes below. The other theory suggests that the membrane developed as an aid to swift ranning, and gradually grew larger and stronger until the animal found iself able to take off and glide for a fow paces along the surface of the ground.

Unfortunately neither theory can be aupported by fowall evidence, for the remains of intermediate forros have so far becn found.
So much, then, for the pterosauta - the first and, for many millions of years, the most sucoessful of the wertebrate aviators. Dut almost from the first the pogsibilities of flight were being explored by another group of ereatures who, although initinlly slower to develop than the pterosauts, were to achieve in the long rum a far greater success. The were the birds, who were also descended from theoodont ancostors

 Fryy have bern atroneal
but had evolved an entitely different answer to the physital problems involved. Instead of an exngererated development of a single finger, the birche employed the whole strength of their forelimbs to chary them through the ain. Before fehicving this stronger and more eflicient form of flight they must ectrandy have reached the condition of warm-blooded. nest afrcady mentioned as a possibility in the pterositurs. At the same time their scaly covering was slowly becoming modified into feathers, which, in addition of their walue in flying, formed an insulating layer for retaining the internally gererated hoat of the body.

The skeleten of the first bird was found in 106 t in the
same Jurassic stone of Germany that produced such remarkable remains of ptecosaurs. The limestone sabl containing the skeleton was purchased by the British Museum and, after examination by Sir Richand Owen, the creature was christened Atehaedpteryw lidtagraphide, of 'ancient wing of the

lithographie stone". Sixeen yeits later a seronnd fossil bird was Found near Fichetsdi, atud was atutized. by the Berlin Natural History Muscum. This wita at firet arsigned to the same genus as Arohoegtory, but anatomical ditlerences were later discovered betwess the two which caused the second specimen to be Ienamed Archatomis.

The Berlin fossil was by far the better preserved, and its flatened impriat on the stone retained in the abandoned attitude or death an astonishing impression of vitulity. Many reptilian characteristics were still apparent. For instanee, the jaws posessed true teth, and there was a long reptilian tail consisting of wenty vertebrae. The skull was more like that of a reptile than a bied, and the wingsi terminated in three fingers with lomidable curved claws. In lact the skeleton might easily have been mistaken for that of a true reptite if the imprint of the creature's feathers had not been preserved on the lithographic stone.

That first hirds were roughly the size of crows, but their Aight was elumsy and they probably spert more time running up and down the trunks of the cyeads, or scrambling in the fronds of the giant lerms, than they did on the wing. Much of their prey, which eonsisted mainly of insects and tranall reptilat, was probably taken on the ground, but sometimes they would launch themselves boldly into the air to pursue the giant dtagon-Hies chat flitted atroos the forest clearings. Of coure we know nothing of their colour of the sounds they made, but we can picture in imatgination the brilliant hucs of their plumage and the chontu of strange eries with which they heralded the Jurassic dawn.
Nothing further is known of avian progress until the Cretaceoul Period, when two other interesting types are known from the Kansas chalk of the Uniced States The firgt of these, named Hepperantir regalif, or "royal bied of the west", was a water bird similat in habits to our modern divers and loons, It atood about four or five fect high, fand seems to have lived entirely on fish. The power of lifigt had been lose, and the wings had dwindled to tiny veatigial armes, which in life were quite invisible bensath the thich covering of feathers. However, the hited legs ware extemely powerful, and spread out sideways at the arikled as an aid to efficiert swirmuing. There ware ninety-fonar sharp teech in the beaklike jaws, so the bird was well adapted for dealing with its alippery and elusive prey.

The other Cretaceous bird we must mention is the much
smaller Johlyyorntr, which was also a fish enter. This was only ruine inches long and somewhat resembled a modern perth. Undike Hegperorat it had well-developed wingat and seems to have been capabile of sustained and effident fight. Its jaws were equipped with teth of reptilian character implanted in individual sockets, but the bones of the wings and Peet were remarkably similar to those of modern birds. The brain, hike that of all birds, probably had eood power of eo-ordination, but-was smaller in somparison to body eize than that of more reeent species.

No other bird remains of any importanee are known from the Mesoxoic, but even in these primitive types we can see the beginninge of an evolutionary line that has led to the varied and colourful bird popalation of the world today. Few ereatures are more ateractive than the birds, and tew have enjoyed greater bidogical suecess. They are among the most adaptable of living things and bave speend to every kind of environment from the tropics to the poles. Some species, like the sparrow, hawe a world-wide discribution; others, like the penguin and the albatrow, are urniquely specialized for a particular environment or way of life. Bticds are also intinitely varied in colour, wize, and shape. One has only to think, for instancen of the tiny brilliantly fued humsning bird, no larger than a humbie bee, and the dowdy strutimg ostrich, so grotesquely reministectu of its anocstors in the geological past, Such creatures, at least exually wint the mamals, have entiehed and gladdened the world and added to our wonder at its multitudinous forms of life. Is is one of the most fortunate accidents of Nature that the birds were able to survive the period of crisis and catastrophe in which the Meworoic fopuiles wore shortly to be engulted.

©HAPTER IG

DEATH AND RE-BIRTH

The end of the Merogode Era wras at period of wholesale extinction of life. Is is the only period in Earth history that can be said to bear some rearablance to one of Baton
 ing the Earth at that time, wast numbers werg whetpt completely awny, Not only individuals but whole races were destroyed, and extinction overtobk the animals of land, sean and ait whith equal indifference. When the holocaust was onter, the whole aspect of life on Earth pad changed. Not a single representative of the dinosums, or of the sighty reptiles of the sea and air, remained alive, Of the splendour of the Midde Kingdom all that was left wat a few families of crocodiles, some surtes, and the lowly prodeccswors of our modern shakes and lizards. Even the invertelsrate did not escape, for the great racter of ammonites and belemnites, which reached their peak in the Jturassic, had wanithed tiom the seas lor dwer by the end of the Cretacoous. The German geologise Johannes walther has wedl named this critical period in Barth listery "the time of the great dying"-

Mammala and birdsalone seen to have won through into the last Era of geological time with unqualified sucects. The mamala especially were destimed to reach a tar higher statudard of achievement ihan any other group of animals. The last pornillion yeara of Earth history has been a reeord of their amazing evolutionary advance. This has eulminated in mant, who despite his many shortcomings rrust be regarded as the most highly decoloped animal to have existed on the Earth so far.

The great Age of Mammals will he considered in more detail in the next chapter. Here meanwhide we mugr bring up to date the story of extly mammalian development. We thall then be able to compare the suteibutes of the eatliest mametals with those of their reptilian contemporatits, and
show why they were able to avoid the fate which overtook the rest of Mesoroic life.

Mammals differ from their reptilian focebears in many important ways. Like the birds they ate warm blooded, which enable them to sustain long periods of stremogus activity. The great majority of them have eliminated the external egg state in reproduction, the embryo leing nourished by complex proeesses within the mother's body. The young are brought forth allive and, unlike the young of reptiles, are cared for and fed by the mother for some time after birth. Their limbs are better adapted for tour-legeed progression and they hawe two defuite generation of teeth. In the puicly technical field there are marked differenees in the anatomy of the jaws and the way the skull articulates with the neck. Most important of aill, the dnatmale have at enormously enlarged cranium which permits a greatly in= creased development of the brain,

It is this concentration on brain power that abowe all other developmentg has given the manmals their distinctive character and brought about their suceess. The reptile were larger and more powerful and the bjeds at least equally active but meither of these groups had a highly developed intelligence. In fact, as we have already setn, the largest and most ferocions of the disobsaus were merely gretesque automata impeiled by nothing other than their instinctive appetites and hereditary desires. Even the most primitive of the mammals did better than this. For instance, the brain already showed a marked expartion in the regign of what are techrically known as the "cerebtal hemispheres". These originally controlled the sense of smell, but gradually evolved jnto an advanced mechanism allowing for a greatly improved capacity for thought. The growth of these powers cventually allowed the ratrinals to demonstrate the superj= ority of intelligence over every other evolutionary biset, and to establish thenselves as the rulers of the Earth.

The ewolution of the mammals through the 1 as million years of the Middle Kingdom is obscure. We have already mentioned the mammall-like theriodonts of the Permian

Period, and suid that such creature as Cynognather were probably closely connected with the basic mammalian stock. Sut theret is no doubr that Cymognthus, with all its ressemblance to the mammals, had already benched off tom the main ewolutionary stream. The majority of the known theriodonts were extinet by the end of the Triassee and only a few highly spectalized forms lingeret on into the beginning of the following Period. The origin of the true mammals minust be sought not in such comparatively large and spectialized animato as Conagnathary but in thetir smaller and more incorspicuous contmporaries. Unfortunately remaina of such creatures are fow and far between. From the whole of the Mesoroic Era not one complete mammalian skelcton has surwiwd, and the only skull datea fromi the end of the Cretaccous, when the days of the great reptilas were atecady numberted Our knowledge of the pritnitive Mesaraid mammails must therefore be derived from a few fostilized tecth and a handful of fragmentary bones.

On such slender eridence very tittle can be said about the habite or even the appearance of the first matntials. But what secrs certain is that during the whole of the Mesozoic Era they made no great advance in size. There are two lines of reasoniag to support this theory. In the firse place, we have the tridence of the bones themedere, most of which belong to animals no larger than a modern rat. Secondly, we know that the eonditions of the Mesobic [avoured the great raparity and size of the dimosaurs and that any animad who at this stage had eome into direct competition with there would have been doomed to extinecion. But although the Mesoboic mammals were small, they were not neocsserily as rave as their remains suggest. Small and delicate bone aft not easily preserved and frequently estese the attention of the collector.

It seers likely that the twofold neccssity of remaining small and of keeping out of the way or the great reptile may have led the firat mammals to explore new cnvironments and ways of like. Thus some forms probably lived in the thick undergrowth of the forests, of actually took to the
trees, while others may have spread into the temperite parts of the world ar on to high ground where the colld-blooded reptiles could not penctrate. If this were 50 , the circumstances of their live probably forced manyo [them to remain comparatively adaptable and to apoid the more extravagant Forms if specialization. At the same time their brains wate growing in size and complexity to cope with the problerns of survival in a harsh and hostile world. Life was certainly difficule for these first primeval matmouts, but the lessons they leamed during the long econturies of the Mesozoic schooded them for their future achievements.

In spite of the unsatisfuthory hature of the evidence, severad distinct orders of Mesozoic mampals can lue recogmized. Two of these ate of partienlar interest to ust the first, known as the Multifuberculatn, becants, alhoughi as side bratch of the main mammalian stock, their tupaims are eomparatively well knowh; the second, known as the Pantotheria, because they may have been diructly ancestial to the rest of the great mammalian group.

The mulutulserculates, of "many tubercled" animbes, were natred from the small projections, or tulereles, on thene teeth. Members of the group were mostly samall, but some grew to the size of a large marmol. They seem to lhive beeri vegetarians, for their teeth free higldy specialized for ghawing, ratlice like those of modera rodents. They flout'ished all through the Jttrassice and Cetaceous Periods, and the last membera of the group persisted into the new Age of Mammals.

The pantotheres, meaning 'all beasts', or more specifeally " all mammals', ate of grater evolutionary significance than the multituberculatex, They wets common in the Jurassic of Eutope and Americia, and included a wide variety of types. The earliest known genus, from the middlic Jurassic of England, was Anphitherium, a cmall insect-cating animal resmbling atm oposurn. A careful andy of the teeth of some of the pantotheres has revealed a remarkable likeness to thete of later mammals, particulatly the marsupials and the monotremes. The marsupials are a primitive group

A Guide in Earth Histary

of pouched mammals, which have flourished since the Gretaceous Period and faclude oar modern kangaroos, while the mototrones are the even more remarkable egglaying mammals, whose modern representatives are the duck-billed platypus and the cchidna, or spiny anteater. It seens likely, although the evidence is not conclusive, that the Fanlotheria gave rise wo the marsupials and were closely related to the anocstral monotremes. They may also have been the forndationstock of all the more advanoed mainimals of later times.

We now have a reasonably compreherisive picture of the cast that was asembled when the curtain finally came down on the middle act in the drama of life. On land the dinogatrs reigned supreme, and the tiny frimitive manmals scurried cautiously through the forsty undergrowth or occupied the cooler and more inaeessible parts of the Earth. In the air the pterosaurs, or winged dragons, hed reached the limits of their grotesque specializations, At sea the mosisaurs ratuged from coast to coast, killing and despoiling without let or findranee. The Earth, it seemed, wat teeming with wital and indestructible forms of life, and the Midde Kingdom, which had alrearly endured for over too million years showed two abatement in has vigour.

But at length with tragie finallity the end came. The Earth stirred like some huge giant waking uneasily from sleep, and the remewed mutter of voleanoes gave warning of momentows events. Soon widespread flowntain-building split and folded the Menowoic plains, the seas retreted, and the swampy aturifes were uptaised into waterless plateaux. Changes in landseape and temperature laid waste the happy hunting grounds of the dinosaurs, sed after the long period of plenty Nature onec more futblessly applied her law of adapeation of racial death.

As at the transition from the Palacozoic Era to the Middle Kingdom, geological events were probably the main cause of the great changes in the patuerns oflife And they brought in their train many secondary influences which sperded up the process of extinction and roade it more complete and
absolute than anything the world had hitherto known. For instance, climatic changes causad wideapread modifieations in plant life, so that the herbivorous dinosaturs were deprived of their lood. As their numbers decreased, the camivorcus predators were themselves threatened with stanation. Simular fundmental alterations in the kidogical economy of sea and air encouraged the declime of the winged deagons and the great reptiles of the poeans.

Yet even when every external factor has been taken into accoume if is difficult to explain such widespred extimetion of all the majo forms of life. This hat caused ericntisto to cast around Egr other theoried, the most intriguing of which is the dectrine of racial old sge. Old age, it is suggested, is mot exclusively the deatiny of nodividuals; it cin owetake whole race as well. This occurs when a group of animals, after a period of successtul udaplation, finds iteclf erjoying a favourable envirominemt with plentiful food and a lack of seriqus competifion. Change jo no langer a necessaty condition of survival, and the hommones, deprived of their true function, begin to indulge in a number of irresponsible experimente. Incividuals end to increase in size of acquire groterque and useless omamentatign, Soon these developmenta became a positive handieap to theit ownores. As size incereases, the reproduction cycle decupies a progressively longer time, and lecundity is diminished. Orramentntion olen becomes so bizarre that it interfores with the normal functioning of the body macthime. The result of such tendencies is to lewer the whole witality of the species and to destroy empletely its capacily to adapt. The race, in fact, become detadent, and if the alightest stain is placed upon it by a change in its environment it in wnable to adjust lewelf and becornes extinct.

The evidence in favour of this doctrine is inconelusive, and its finer points are still being disputed, But what does seem certain is that extinction can be porrelated with oweropecialization, and is an resutr of both interial and external factory. The dinosaurs failed nat in spite of their size and rapacity, but because of it. For over Iod million years thay given them bulk without brain and physical power without intelligence. Monwhile deep in the tangled undergrowth of the tropical lorests, and in the temperate outposts beyond the boundaries of the reptiles' domains, the mammals were biding their thme. The very dangets of their fife kept thern s.rall, active, and quick-witted, so that when twilight fell on the Meworoic Era, and the dinosanter began to falter and fail, they were ready at last to step into their indieritance.

CHAPTER 20

THE AGE OF MAMMALS

THE Cenozoic Etin saw the dawn of the Eath as we know it today, It is the shortest of all the geological eraw, kaving lasted only pormillion years, compared to the 125 million years of the Mesozoic and the 925 million of the Palacozoic. Yet in this, geologically speaking, very brief epan of titue, all the features of the modern world have taken shape. The sens and eontinents have acquited their familiar puthines, the great mountain ranger have been seulpted to their present form, and all the modern tamilies of andmals have evolved. Towards the end of the Era man himsel entered upon the socene, to make the most limdamental of all transformations in the pateerne and direction of evolution.

As deacribed in Chapter b, the Genowoic Era is broddly divided into seven main sections known at Epochs, The first five of thes, known respectively as the Palacocene, Eocente, Oligocene, Mibcone, and Plipenc, constitute a geological Period for whith the name "Tertiary' is in cormon though not strictly accutate use This Period lasted from po million to approximately I million years ago, The lazt million years of Earth history constitute autother geological Period, the Quaternary. The groater part of the and indeed the whole of it in the opinion of wome authorities, consists of a s single Epach, the Plesstocene or Great Ice Agge The time from goov 12.0 . to the present day is variouly regarded an part of the Fleistobene, or at a seventh and indepetudent Epoch known as the Holocene.

On the following page is the last palaedgedgraphic map of the world that it will be necessary to eprodute in this wolume. It hhows the geography of the Escene Epoch, when the distribution of Jand and ena was still very different from what it is today. Especially noteworthy is the great extent of the ancestrall Mediegranean, known at Tethyg which covered the whole of the Middle East and southern Asia.

$$
5
$$

There was also a broad band of sea which ran from the Aretie to the Indian Oceans, splitting Europe and Asia into two independent land minsses, while the two partes of the American contithent were not, as now, connected by a land bridge. As the Cenozoic Era advanced, this arrangement of land and sea was greatly changed. Central America began wo extend. wutliwards until it was united with South Ameriea at what is now the Isthrnus of Panama. The sea withdrew from western Russias so that the great Euralian continent cunce into beitig, while Tethys shrank westwards into the present Mediterranean basin, By the Pliodene Epoch the only obvious differences from the mip of the world today were the presence of a great expanse of water connetting the eastern Mediterraneat with the Black and Gaspian Scas, and a penitulla projecting lfom south east Asin over what is now the Mallay Archipelago

At the same time as these alterations were being made in the world's coastlines a great change was allos aking place in the vertical reliefor the lands. We have alecady told how the monatiatur ancestral to the Andes and the Rockied were upr raised at the end of the Menoroic. These now went through further geblogieal changes and were then gradually weath ered to their present shape. In the Old World, the Alpine and Himalivyan montibeim systerns were upraised from the bed of the sea by the compression of the land masses on pither side. It is awe-inspiting to contemplate the physical forces that coused these stupandous bodies of mater to be glowly litted, and then ride cyer the hetghbouring shoreline in huge wayte of twisted rock. A few million yeara after the Cenozoic Eea had dawned, there submarine formations had peached a height of over goyooo feet from their stathing point on the ocean floor. Whe have groplhe proot of this today in deposits of Eotente mavine fossils upraised to a height of ro, ofo feet on the Himalayan chaint

In addition to such episodes of mountain building, the Cenozoic world was shaken by exceptionally violent outberrats of voleanicactivity. The Giant's Claweway in Ireland, athd the volcanic rocks of Seotland, Grecriand, Iecland, and

A Guide to kirrsh History

southem Isdia, are the emmants of Cenosoic basalt flows, while the Great Rift Valley of East Africa, and many areas in Centerl and South America, were devastated by constant centutions. Later in the Era the voleanic chains of the Mediterranean burat into life, and etpeated eruptions in Japan, Alaske, and the East Indies completed the lamous "Giedle of Fire ${ }^{1}$ which now enciedes the Racific.

The climates of this croubled time have shown a not unexpected diversity. As in earlier periods of crustal unrest, ocean currents and prevailing winds were affected by the changing outlines of the continents and the buileding of new mountain ranges. These in turn affected the temperature and rainfall so that in all the areas of pronouneed geological change the local climate waried from Epocth to Epoch. Despite this, the Cenoroic climate sliowed a marked general trend. In the first part of the Eta the world wais much warmer than it is today, Magnolias and figs and the descendants of the Mesozoic cycadophytes grew 解 far north as Alaska. Ir England in the Eocence the frea round London enjoyed an climate simular to that of modern Malaya. Growe of Nipa palme flourshed on the Isle of Sheppey, the chines of Bournemouth were covered by a luxuriant jungle of tropical everyerens, and crotodiles basked on the mud-fats of the Thames at Twickenham and Kew.

But at the Tertiary Period wore on, the climate bocame more extremc. The palms retreated southwards and the vegctation betame more temperate in character. Yines, oaks, and ginkgos spread ower southern England, and cold winds began to blow from the ucwly formed polar iece caps. By the beginning of the Pleistocene, at we shall see in the next chapter, agetat nwethern ies sheet extended from the Arctic far south into Europe and over nearly fall the contiment of North America. This marked the dawn of the Great Ite Age which likes finally shaped the landscape and elimates of the modern worldi.

To turn wow from geological changes to the new patterns of Cenozoic lific, we fund that for the first time in Earth history the landseape is covered with dumiliar vegetation.

Deciduous trees and flowering plants, which appeded in the last period of the Mesozote Eta were sphead over most of the world. Alongside them the older conifers and cyendly eontimued to flourish and mathy modern species had evolved. Transported back to the Tertiary Period by some kind of Weltstan time machinc, we sheuld have found the graseoovered hills, the forests of oak and becch and maple, and the rolling plaing that characterize the temperate world of today.

The most remarkable deature of the new vegetation was the triumph of the flowering plathts, of "angiosperms' as they ate technically called. The Greek word engio menar 'box', and the rame angiosperm was toined as long ago nat 1690 by the Getman botaritst Paul Hermann to signify a plant whose seds were ancased in a seed bos or seed vessel. The angiosperms ase the highest order of the plant kingotot. They include all the well-known modern deciduous trees, such a* birch and walnut and plane as well ns such common flowering shoubs an hoily, laurch and ivy, No rave of plants has yet prowed itself so veratille. The angiogpents semin equally it home in the sweltering heat of the tropics and the introspitable lands within a fow doprees of the poles. They grow up to the snowlise on the highent mequtaing, and some hundreds affect below sea-leyel in irland basins, while different apocies flourish with equal success in andid deferts or in tegions with an atmual rainfall of ower 500 inches. Their size ranges fromi a mere twellih of an inch to the giame redwood trees of Amarica which meisure go leet across and nearly 350 Ebet ini height; and while some apoties last only a single summer, others, like the githe baobabs, live for several thoustnds of years. Yed the secret of this astonishing veratility is still unknown. Leven the great Chatles Darwin was baffled to atoont for it, calling the spectacular sprest of the angiosperms 'an abominable mybery' which he was quite at a lose to explain.

The radiation of the angicsperns wat paralleled by the spread of the new mammalian fauna, whose original and ently history we have already described. With the passing of
the great roptiles, the mammals assumed their inheritance with the vitality of a powerful race suddetly teleatsd from bondage. They spread in a mighty upsurge of ewolutionary energy from the equator to the poles and, like the reptiles before them, made a succesful re-invasion of the sea sand the air. Most aptly can the great bulk of the Cenocoic Era be called the Age of Mammals. These new rulers of the Earth achieved in less than 70 million years a dotrote of mental progress and physieal suecess that made the far longer dyrasty of the reptile stem like an extravagant and pointInse episode. Ondy in the last geologieal Period have the mammals begun to show signis of a declime. But even if eventuatly, like their predeocsors, they should fail and die our, they hawe already produced from their ranks Hown fapters, who is indisputably the highest product of the ewolutionary proces so far.

In the short spabe at our disposal it would be imposible to give a sytterratic account of the Cenozoic mammals, or even to tell how they evolved from the insigsificant little creatures we dentribed in the previous chipter. Out survey must therelore be in the nature of a lucky dip in which wh thall have to limit oursetwe to describing a few of the more impressive typer and sonue of thase who have been antestral to the fantiliar creatures of today. Nor shall we have time to do justice to the birds of the Lowly starvivers of the reptile dynasty. The Gerozoic bieds, such as the dantestic Phoperhasos, which was as tall as a man and had a sleull as larye as a horse's, and the ceven tranger Diafona and Anthropornir, are worth a study on their own. The reptiles were for the mext part too like their modern descendints to dernand muel of out athention.

Restricting curselves to the mammals then, we still have an extemordinatily diverse and interesting array of creatures, some of whom elosely rivalled the giant reptiles in tize and grobequeness of ofnamentation. During the Eocene, giant hooted mannolials known as citanotheres roanced ateros the northern continents. Another group hnown as chalieotheres had fect equipped with massive clawa, which they probably
used for digging up mots and tubers. The chalicotheres survived in trapical regions of the Old World right down to Pleistocene times, and one of them was responsible for the Fatrous error by Baron Cuwier deacribed in Chapter g. Most of thete minals exceeded a rhinocerses in bulk, and their heads wore often omamented with anything up to six grotesque bary swelling or hombing One huge harmed beast named Arsinoithrium, from the Oligocome of Antica, had a

Distipmur, an Escene 自ightum birdr sthanding suath leet all
skeleton twelve feet long and was almost certainly the largest land animal of its day,

Although many of these creature had a superticial redertblance to thinocerores, they did not belong to the true thinoceros steck. For a true ancestral rhinoseros we have to go to creatures like Teleoceras which lived in North Ameries betwern so and es thillion years ago. One aberrant member of the group known as Polatiderimm, from the Oligorene of Asis, was the largest lind mammal of all time. It stood eightern fert high at the shoulder and measured at least
twenty-five feet from nose to tail - roughly the size of a double-decker bus.

Most of these creatures were probably related to one or other of two groups of primitive hoofed mammals who flourished at the beginning of the Tertiary Period. These were the comparatively lightly built condylarths, and a heavier and more thick-set stock known as the amblypods. The horse tribe originated at the same time and is probably closely related to condylarth stock, if not actually one of its branches. As the horses have had one of the most interesting

Bstuchitherim, the largert of all land mammals, compared to a man in seale
and well-documented histories of all types of mammals, we must examine their record in rather greater detail.

The earliest fossil horse is the famous little Eohippus, or 'dawn horse', from the Eocene of North America, more correctly known as Hyracotherium. It was a graceful creature no larger than a fox terrier, with three toes on the hind feet and four on the front. It was suceceded in the Oligocene by the somewhat larger Mesohippus, with three toes on each foot. Next, in the Miocene and Pliocene respectively, came Merychippus and Pliohippus, the former having three toes on each foot but only using the central one for running, the latter having only one toe visible externally, the outer pair being completely covered by skin. Finally, in the Pleistocene

 African elephand).

Epoch, came the modern horse, Fguter, with its characteristic hoot:

This eqplutionary series is particularly inturesting in showing how an animal adnpts itself increasingly well to its environiment and the needs of its life. The ancestral horse doubtless had five toes, like its, reptilian and early marnmalian fortbearty, With the need for increased speed, however, it legan to run for longer and leniges sjedlls on tiptoe, thus carrying most of its weight on the thete central toes of each foot, the outer pair being lifted of the ground. Gradually these unused toes beharte vestigial, until eventually in Mesohthone they had completely disappeared. As time went on, the next pair of toes was also affected, so that the animad was ruming on the cerbral pot of cach toot. This is the stage reached in Merythifows, where the weight is carried on ft strong central toe while the two remaining toes on ench foot dangle uselessly on eithet side shd are already beginning to disappeitr. In Priphippw they are not even externally visible, while in the modern horse, which tepresents the firitl stage of this line of development, they survive only as vestigial splint bones and the central toe has hardened into a lagge tough hoot.

Another exceptionally interesting line of development can be followed in the elephants. Elephant history begins with the litule creature known as Moerithertum from the Eocene of Egypt. This stood abont two lect high at the shoulder and had neither tusks mor trunk, although its upper lip wats prehensile like that of a modern tapir. From the beginaing of the Oligocene the immense radiation of typer oceurred. The animals became larger, and their second incisor teeth developed into the gigantic tuses which chatacterized many extinct species and are still seen in most impressive form in the African elephant of today. Wut this increase in size, and the growth of tusks, did not prove to be entirely an asset. A stage was reachod when the arimal's head was two far from the ground and jits tusks too prominent for it to reach ite food withont dificulty. Natures andswer to the problema was the prehensile trunk. This fantastic organ enabled the
elephant to reach beyond the points of its tusks to gather vegetation, and to suck up water without bending to the ground.

Despite the survival of two types of elephants to the present day, the race itself must be regarded as a daifure. Except for the modern Indian and Adrican species, the infonite variety of forms that cvolved from Moaribatiam bave all become extimet. For instance, from the early group known as the mastodons, not a simgle specics survived till the end of the Pleistotenc. Yet throughout the Tertiary

Peried this group was represented by a well-diversifiod array of species. In Oligoceme times in Bgypt there dwelt a primitive mastodon, called Palamombladon, with a pair of tusks in both upper and lower jaws, In the Miecene, there was a creature known by the sonorous name of Tetrabeloden, with a long lower jaw terminating in shert broad tusks, In the Pliocene a more truly elephant-like raastodon appeared, who may have been the ancestor of the famous manmoths of the Great Ice Age. And in addintion to all these creatures who were elose to the roain evolutionary path, there were grotegque side brancles, such as Dinotheritan, whose lower. tuaks curved backward like the claws of a gigantic eat.

Paratlel with the development of the elephants many
other mammals were maling interesting evolutionary experiments. Some of these repeated the mistiket of the dinosaurs and the carly giant mammals by concentrating on great aize or groteqque ornamentation. Thus one aberrand genus of the camel family carried its head ower minc feet frem the ground, while in America there was a giant pig which measured ten and a hitlf feet from head to tail and stood higher than a manat the shoulder. In South America the outstanding members of the Cenozoic cast were a

An enrly Conoxple croodont called Ilywnown
ground sloth ower twenty fect long and two gencra of gigantic armadillos. The Ausemlian Dipmotaton, the largest known marsupial, closely resembled a modern wombat entarged to the size of a rhanoceros, while the palm for useless ornamentation must surely go to an extraordinary deerlike ruminaint called Symidetoceras, which had a fantavtic double horn on jts nose like a pitch-fork.

Preying on these Cenozoic herbivores were a varied tribe of flesh-eating animals, whose origin and development we must now briefly describe. The flesh-eaters of today are represented by a number of large and successlul groups broadly divisible into the famillar cat and dog tribes, but including also such widely dissimilar ercatures as the bears,
racoons, and civets, and the seals and sea lions of the oceans. Despite cheir watied forms and ways of life, all thrse creatures were probally desecnded from a single primitive group known as the miacids which fllourisbed in the first halfo of the Tertiary Period. The miaacids originated in their turn from sa group of tiny insect-eating mamnals of the Mesozoic.

None of the miacids ga far discovered was much larger than a weaged, a creature which they clecely resembled in shape. A typital Corm wat the litele Cymadetio lrote the Oligocene, which was probably equipped with retractile claws like a modiera cat. Contemporary with she miacids, but larger in size, was the richly waried race of the ereodionts, who must have been the scourge of the large feerlinvorous animilut that roamed in wast numbers aceross the plains. The giant of the eriber, known en Andremparotur hatd ankull three ficet long, and was the largest flesh-cating mamual in the history oll the Earth.

Bur the luest known of all Genozoic carnivores, who rose to power with the passing of the creodionts, were the magnificent stabbing cats of the Pliocene and Pleistocene. These are the creatures popularly but inaccurately referred to as the "sabre-toothed tigers", bocause of the extroordinary length of their upper cuatine tecth. Stabbing cats such as Smiladon were athorg the most beautiful and magnificent of Cetozoic Inimals, and they probably played at prominent role in the extermitation of the ground slothe and othet vegetarian giants buffore they themselves becme extinet.

The identificutiot of the many diferent kinds of fossil carnivores is largely decided by theit teeth, Flesh-cating animalo kill by biting, but meat is easily digestible and docs not need to be findly chewed. Theas in the strict carniveres we find highly developed biting or stabbing teeth matble of piercing thick hitelend slicing through mustle asd wendons, while che molars lor grindimg and chewitig are greaty reduced. As an examples the cent is well equipped for biting but has nondequate chewing ravechanism-atact that can be casily verified by watching the denteatic cat dealing with a tough
morsel of cooked meat. On the other hand, herbivorous animals have good grinding molars but lack specialization of the canines. In between these extremes are creatures who subsist on both meat and vegetable food. The dog, for instance, which is not exclusively carnivorous, has preserved efficient molars but has well-developed canines as well.

The flesh-eaters bring us to the end of this brief review of the Age of Mammals. It has necessarily been sketchy, for the Cenozoic rocks, being of comparatively recent age, have preserved a detailed and complicated record that cannot be adequately summarized in a few pages. Many important aspects of the story have not even been mentioned; for example, the return of one group of mammals to the sea, which has led to the evolution of the porpoises, the dolphins, and that greatest of all animals, the whale, which not even the largest dinosaur exceeded in size. Nor have we been able to tell how such mammals as the bats, the phalangers, and the flying foxes made a successful invasion of the air. Such fascinating episodes have had to be sacrificed to the demands of conciseness and to the main object of this book, which is to present the record of Earth history in its broadest outline and in an easily comprehensible form.

There is, however, one part of the mammalian story which has not so far been mentioned, but is yet of greater importance than any other. This is the history of a small group of tree-dwelling insectivores who appeared in the record less than 100 million years ago, and gave rise to the lemurs, monkeys, anthropoid apes, and finally, in the last stage of Earth history, to man. This group, known as the Primates, demonstrated in its most obvious form a principle that had already been proved by the more progressive of the mammalian orders. This principle was the vast superiority of brain over physical strength as a means to survival and power.

We have already described how the great reptiles were instinctive automata rather than thinking beings, and how the aberrant groups of mammals who concentrated on size
and useles physical development were simply repeating the reptiles' mistakes. But forturabely not every group of mammals was led into thas evolutionary blind alley. Even the lower forms had made sorne kind of menusl progress, while the more adwanted carnivgrond 底rops hat achieved a wery high degree of inselligence inded. The Primates brought this proces to itr culminating print. They twoided the pitfalls of excessive physicall specialization and concentrated instend on developing the power of their brains. The story of these developmenta will be told in the final section of this book, wher we shall tescribe the making of man. Wut first we must finish the physical story of our Earth through the frosen centuries of the Great Ite Age, which formed the tething for this moser tetens and dramatic epistode in the evelution of lire.

CHAPrER 2I

THEFROZEN WORLD

PoR many thousands of years during the latest, or Quateraary, period of Eatth history the world has been clothed in a great throud of ite and snow. On seperal occasions glaciens have advanced from the poles to cover nearly a third of the land surface of the globe, while areas now enjoying ternperate, or even sub-tropical, climater have been condemned to a harsh and seemingly endless winter. At the height of the most recent period of intense cold, which oecurred about 50,000 years ago, the Europest glaciers ground saththwards to the Thames, while the whole of temperate America became a bleak and inhospitable wilderness.

There have been tour such periods of intense glaciation during the million-odd years of the Quaternary Period. Thetr occurrence was first deduced in 1835 by the famous Swiss-American biologist Louis Agassiz, who disoovered that the glaciess of the Alps had onee spread out widely over the surrounding lowlands. This led him to suggest that in comparatively recent geological time the climate was far more savere dhan it is today - a view that was later reinforced by his studies in Scotland and the United States. Although the theory was at first greeted with secpticism, its truth is now universally accepted, and the date and duration of the four Clacial Periods cas be estmated with some accuracy.

The first glaciation occursed in the early part of the Ouaternary between I million and 600,000 years ago; the second and thitd att 450,000 and goo, oon years ago respec tively; and the fourth about 60,000 to 40,000 yeats thgor These Glacial Periods are knowe oollectively as the Great Ite Agc, and they correppond to the Pleistocene Epoch of geolegical time. This was the Period when the finall touched were given to the shaping of the modern world,

The term "Great Ice Age' has more poetic than scientific truth, The four perlods of glaciation which it contains

The Prozen World

Divitions of the Great Ice Age
occupied only a strall fraction of its length, the major portion being taken up by the three comparatively warm and prolonged Interglacial Periods. The relationships of Glacial and Interglacial Periods, with their names and approximate dates, are shown in the chart on the previous page. They are named after the Alpinde locallities where the different glacial deposits are beat displayed, and the dates, although necessarily approximate, are in accordance with the latest scientific estimates.

One interesting fact that emerges from a study of the chart is that the Great Ice Age may not yet be over. The last glaciation occurred so recently that the Holowenc may turn but to be not a rew geological Epoch, but a fourth Interglacial Period. The ice is now retreating, but time alone will show whether it will finally disappear to leave the poles exposed, as was the case through so much of Earth history, or whether it will once again advance to plange the world into the rigours of a fifth Glacial Period. If this should ocour unprecedented problems will confront tatankind. The ice sheets will cover the sutes of many of the major citics of the Northern Hemisphere, and the greater part of the Britisb Istes, as well as large tracts of the United States, will become uninhabitable. If we could glance now at some newspaper of the distant future we might read how vast masses of the world's population were migrating southwards before the advancing iec. Or perhaps we should learn how atomic energy had allowed the scientists of that time to keep the glaciers themselves at bay,

But we must return from these intriguing speculations to the sober facts revealed by our knowledge of the past. We now know that in Quaternary time the ice sheets of the Northera Hemesphere radiated from three main centres. In eastern Canada, round Hudson Bay, there was the great Laurentide ice sheet, which spread southward on occasion to the Missouri and Ohio rivers. Nearer home a Scandinavian iee sheet covered the whole of northern Europe, including most of the British Isles, which at that time were joined to the contincrit. In Agia the principal ise sheet had its
centre in eastern Siberia. The area and thickness of these fice sheets reached immense proportions and their enormous weight caused a marked down-warping of the continents on which they rested. For instance, the Laurentide iec sheet alone had an area of over 4, broppor square miles, which is larger than the present Antaretie Continent. It wits at least B,ooo feet thick at the centre, and itt weight caused the whole of eastern Canada to sink by several handreds of feet. In Europe today parts of Seandinavida are still rising at the rate of two inches every five years ateet their release from the weight of the last ise shect, which began to melt atbout no,000 ycars ago.

The chuses of these recurrent periode of glatiation, like those of all Fundamental climatic changes in Earth history, are incompletely kuown. It seems unlikely that any of the theories discussed carlier the thes book could fully acsourn fot the complicated Antuations of temperature found in the Great Iee Age. The most plansible suggestion is that these were due to variations in the antount of heat actually emitted by the sum, perhaps related to sun spot activity. Unfortunately, however, there is no prool' that such variations have oceurred on anything like a sufficient acale to produce the comparatively rapid ehanges which we know to have taken place. We must therefore Igave this bafling problem lor a subject on which we have more satisfactory information $=$ the eftect of these recurrent periods of cold on the evolution of life.

The Pleistocene, being 50 near to is in time, is the best documented Epoch of the Cenozoic. Fosil pemains are abundant, and these have been supplemented on occasion by the prescruation of whole snimals decp frozen in the Arctic snows. The classic eximple is the Deresovka mammoth mentioned in Chapter 5, whose fesh was still edible after 20,000 years.

One of the most remarkable facts reveded by the fossil evidence is that the Pleistocene snw a marked tecline in mammalian life This tendency had begun in the peevious Epoch with the extioction oll several getera and species and
the restriction of others co a far more limited range. Then, as the glaciets of the Great Ice Age alternately advanced and retreated across the northern continents, an increasing number of mammals began to fall by the wavside. Even the last 50,000 years has seen the passing of numerous species that were dominant during the earlier part of the Quaternary Period.

It is perhaps significent that many of these vanished typer were of large size. Almost every major group al thammals was represented in the Pleistocene by at least one giant form that did not survive into modern times. Among the creatures that perished were the huge Australian marsuphatb, several kinds of gigantic deer, the bixarre armadillos and ground slotlss of South America, and all the mammoths and mastodons of the Old and New Worlds. Climatic extremes and epidemies may have accounted for some of these casualties, but the destruction was on so large a scale that once again we cannot ignore the possible influcmee of racial ofd age Whatever the cause, the mammits today are undoubtedlly on the wane. The only exception is man, who with the powers confered upon hin by the growth of his conscious. ness seems to be embarking on an entitely new stage of the evolutiontary adventure.

Before succumbing to their fate, several of the Pleistoceme giants made initially subeesstul efforts to adapt thernselves to their icy enwronment by growing a protective cont of
 was common in Europe down to a few thousand years ago, and is depicted in the cawe paintings of the firat true men. In England duritg the Fourth Glacial Period the woolly mammoth Elphtar frimigenitur roamed in kerds along the valley of the Thames. Southern England was at this time a land of steppe and tundra similar to Lapland and parts of northern Rusaia today, and the mammoth shared his domain with the reindeer, the aretic fox, and the steppe marmot. Farther south, in Framee and Spain, the giant cave bear, Urros spelaus, competed with primitive mans for the caves nud rock shelters of the Pyrenees.

In the warmer Interglacial Periods a new fauna moved into Europe from the sulb-tropieal lands lying to the south. Such migrations were made prosible by the presence of two land bridges connectime southern Europe with the Atrican continent, and dividing the Mediterranean into a pair of inland lakes, One bridge ran fromi Spain to Morocoo acpogs the present Straits of Gibraltent, the other from the tee of Italy across Sicily to Tunds. As the ier sheets retreaned northwards, wast herds of African geme moved across these tongues of land, followed by the predadous catrnivores of the time. The woolly mammoth was replaced in France and England by a different species, Elephas entiguars, which had mo need of a protective coat of hair, Hippopotamuses wallowed in the rivers of Oxford, Essex, and Kent, lions hunted in the Yorkahire dales, and seavenging byenas followed in the train of the marauding sabre-toothed cats.

In North America an equally impressive army of Ploistocene mammals rommed across the prairies or eked out a scanty living on the turdre that berdered the stomeswept ice fields. There were four apecies of mammoths, ranging from creatures the size of a small Indian elephant to the mighty Mamondand innperator, the imperial mammoth of the southern Great Plains, which stood over fourteen feet high at the shoulder. There were woolly rhinocerowes and camcls and at least ten species of wild hores. Finally there was the Royal bison, Bison datrifons, with horns ower six fest long, and Bos propigetiat, the awrochs, whose European cousin survived into quite revent times and, like the woolly rhinoceros, was often depicted in the mugic deawings of the Stone Age cave painters.

Preying on these herbivores were the great Atnerienn flesh-taters fueh as Smitodon, the last of the stabbing cats, and the lion-like Felis atrox whose bones are pommonly found in the tar pits of Rimelio la Beea detar Los Angeles. Another creature from these parts was the dire wolf, Canis dinnes, which probably ran down its quarry in grent packs as wolves do today, In addition to such extinct types there whs a large assemblage of roodern carnivores including the lywx and the
puma, or 'Amesican lion', as well as such smaller creatures as weasels, otters, racoons, and badgers.

The record of Pleistoceme birds is less lawish than that of the mammals is bind skeletons are not catily preserved, but a number of striking typer are nevertheless known. The giant of the time was the ostrich-like moa from New Zealand geientifically known as Dimonir. This creature, which sometimes attained a height of over ten fect, was exterminated by

Dikwnit, the nooz, from New Zealand (lefif) and Alyperxif, fram Madagiatir
the Maoris quite recently in human history. Another giant form which may have been exterminated by man was Aegornis from Madagascar. Although shorter than the moa, this bird laid the largest egge known to science, with a chpacity of over two gallons. The remains of these giant eggs, discovered by the early navigaters, probubly inspited Sinbad's spories of the rukh in the Arabian Nighas.

The catalogue of extinct creatures which peopled the world during the firal stages of the Pleistocene Epoch couth be indelizitely prolonged, but with the mou and the halflegendary rukh we must bring it to an end, These strange birds of the southern islands, and the shaggy mammalian
giants of the snowg, mark the passing of the unfamiliar world of the past and the dawn of the present age Even as they dwindled to extinction in their citadels the wast iegions of modern antmals were sptetd acros the globe in much the same form as we know them today, There were lions and elephants in Aftica, tigers in India, and huge herds of beyon ranging the American plains, "The numbers and distribution of these crentures have fluctuated with the passing of the centuries, but the general pattern of modern bife was aiready established 20,000 yeama ago.

With this final contingent in the procestion of life we come to the end of the record of pre-human evolution. Beginning with a' void and formles planet, we have watched the growth of life from a microscopic apeck of jelly, pulsating at the meeting place of sea and land, to a waried array of organiems of unbelievable size, power, and complexity. We have seen the geologital background of the drama seulpted for cach different scene atm we have reflected on the mighty forces that have brought these changes about. Finally, we bave followed the fluctuating fortunes of the successive groups of animals, and wondered at the immense witality that seemed perpetually to drive them towards their unknown goal.

But the time has now come when we, the human spectators of the drama, must watch the entry of our own annestors on to the stage. So far the history of the Primates, that great group of mammals from which man derives, has scarcely been touched upon. This is because it is so tremendotsly important, and so pregnant with possibilitics for suggesting the whole future course of evolution, that it was thought best to devate a third section of our book to this subject alone. However forlhardy the seatch may seem it is in the story of the Primate group, if anywhere at all, that we may find a hint of the meaning of evolution and of the possible goal towards which life is moving.

The Rise of Mankind

¢HAPTER 2

MAN＇S RELATIONS

Untic the lost bumdred yeats of so the human race was regarded by most Europesins，whether educated of not， as the final produtt of a aix－day creation，Man，it was aswomed，had been selected by God as the elimax end faison d＇tire of the creative process，and it was only because of Evers lamentable indiscretion in the Garden of Eden that he was denied the full enjoyment of his birthright．The animals although crefted on the same day as man，were eridendy of a different and distimety inlerior stock．The main reason for their existerice was doultless to ensure that the pampered overlords of creasion should hawe a plentitull supply of food．

It was not casy for human beinge，who had always regar＝ ded themselves as enpecially privileged beinger，to tace the fact that they were simply upgraded apes．Datwinst doctrine of natural selection，and particutarly his becount of the descent of man from animpal ancestors，cande is a great shock to Many naive and sirmple people who teemed，inexplicably， to think it mote igroble to rise than to fall．But fortunately most of the hysterical opposition to Darwintem has now absted，and what was once the＂theory＂of evolution，modi－疗ed in detand but the same in exsence，has passed intop the body ofisienufic knowledge．Today it is no longer necessary as it was even fifty years ago；to defend the simple fact that ment x_{t} apes，and monkeyt belont to the sime great lamily．

The evolution of man during the last million years，when he acquited all his nopst distinctive attributes，will be cons sidered mote fully in the next chapter．Here we mosst first
briefly review the history of the great Primate group to which he belorge and look at some of the existing kinds of animals who car claina to be his nearese rclations, Mans"s closest relseives in the modern world are the four genera of anthropoid aper = gorillas, chimpangees, oramgutinis, and gibbont. Second to these mone the monkeys, including the andwanced types of Africa amd Eurnsia and the generally mote primitiwe warieties found in South Americu. Third ${ }^{5}$ the little Indonesiate mammal known as Tarbins, which is the sole surviwor of a group that probsably played a wery important part int the ancestry of the lighleer Primates, Finally conde the lemurs, an extrenely primitive lrapth of the Primate stock trow idnast entirely contined to the island of Mad

The rescmblances betwecn man and the anthropoid apes are apparest cyen to the rocst superficial inspection, and are made doubly eleat by a study of Primate anatomy and behaviour. For instance, every bone in man's skeleton can be paralleled by a similar bone in the skeleson of any of the great apes, while his muscles are identical in structure and
 even lijs brain, although muth latger in size, is similar in ita basie materials and organization. In behawiour we can othen see in apes the embryonic exprestion of many of the patterna found in young or intellectually immature humans. Man is, in fact, far closer to the gorilla and chimpanzec than are the later to the more primitive merabers of fle Primate group.

Monkers are considerably 仙rther remowed from man than the great apes, but many of them still show remarkably" human characteristics. For example, their eyes, like those of the apers and man, are set close together in the front of the head, thus enabling them to enjoy stermodepic vision. The gense of imell is less important than in the lower animate, and the forelimbs are apecialized for handling food ond other oljectes. The monkey brain, too, is exceptionally well-deweloped, and in some of the smaller species has a greater weight relative to that of the body than in any other mammal.

The extraordinary little Towturs from the East Indies, although far less adwanced than the monkeys, is. also distandly relatod to the human farmily. Whereas most mamonals have loge meluziles, Tatyitw has the flat face typical of the higher Primates. It huge cyes are set elose together in the herad and its brain is large in proportion to its tiny body. Leraure reptesent an oven more primitive type than Tarsias. Many of them have the long fox-like snouts of the lews adwanced mammalian groups and their cyes are for the rocest part widety spaced.

Of course, all the modern Primate groups that we have just mentioned are far too specialiaed for any oue kind to be directly ancestral to any' other; the idea that 'maeri are descended from monkeys ${ }^{+}$is one of the early miseonecptions about Darwinisin that is still repeated by people who prefer an easy catch-phrase to the urouble of findirag out the faces. But what in undeniably true is that at some time in the past a group of animals existed from which men, apea, monkeys, Tarsidy, and the lemurs atl derived. The amimate of this group no more resembled moderi monkeys than they did the modern Tursius, ape, or lemur, but the potentialities for development in all these directions must have been present or the existing race of Frimated would never have evolved.

Hawe we any grounds for asserting what this ancestral group ofanimals may have been like? Well, we canday from our kucwledge of the way that evolution works that its menobers were undoubtedly both smallex and less specialized than any of the existing Primate forms, It acems likely, also, that they were arboreal, for every Primate lhat hands and feet that are in warying degrees specialized for a tree-dwelling life. There are several other lines of evidence connected with eyesight and brain development, but therec is unfortunately no space to deseribe these fully here. We must thereloce content ourselves with the summary statement that the remote ancetors of the Primates, and theretore of mani were probably amall arboreal insect-eaters wery like the modern Oriental creatures known as tree shrews. It is likely that these had evolved from amall tree-dwelling
reptiles during the Jurassic division of the Mesozoic Ena, and that lyy the time the dinosaurs had met their fate they had. atready begun to differentiate along the various lines of development that were to give rise to the Primates of today. It is odd to reflect that one of these lines, stemraing mote than fo suilhion years ago from a group of small and insignificant mammals, wats to evolve inno the race that seulpted the Venus de Milo and the Winged Victory of Samethrace, conceived the possibility of wieless oompunication and atomie fission, and learnt to calculate the distance and internal temperatures of the stats.

 And An metern tarier

So far in this discussion of man's relations we have not mentioned the contribution made to our knowledge by the seifence of palarontology. Untortumately the lossil record of the Primates is mot nearly so full ins it is for other branchee of the Animal Kingdom. There are several good ratans to account for this Fact. For example, Primated are more intedligent than any other animsl group, and therefofe scldom sustain death by drowning, which ie one of the surest ways in which bones are preserved. They also mainly inhabit forested areas where organie acids in the woil tend to destroy' their remains before they become fossilized. Yet despite these factors several fossila of ancestral Primatos are known, especially from the early part of the "rertiary Period. The Oligocene io less well doequented, but when we come to the Miocene and Pliocene there are some tantalizing temains of early apes, as well at creatures that may have been ditectly
ancestral to man. Finally, in the Pleistocene, the first undoubted human types appear and we see the beginnings of tool-usintig and tool-making which have caused this time to be called the Old Stome Agen "These furst stone tools, and the forsils resocizted with them, will lye discused when wo tell what is known about man's immediate ancestry. Here we will restrice ourselves to the remaides of carlier and les adwanced Primates.

The oldest Pritrate fossila yet disoovernd consist of tecth and frigments of bone dating from the Palacoceme atod Eocene of Europe and North Aretrica. Among the bost known ate those belonging to the ancestral European lemur Adapis and its American relation Mollowturg both from the Eacenc. There are also mumerous fragmentaty remains of titsivers of at leagt twenty-dive diferent genera from the same Epochs. Some of these may have been ancestral to the monkeys and apes which began to develop in the Oligocenc, about 45 million years ago.
Oligoene strata below a dried-up lake in Egypt produced the carliest fessil remains of a true anthropaid. This creature is known has Parabitheurs, of 'vear ape", and it was reconstructed from a single jaw-bone and a few teeth. It wat quite a smadl animal, zatiocly the size of an organ-grinder's monkey, and its teech sugesest that it lived on a mixed diet of fruit, insecto, birds' egegs, and small reptiles, Anatomista are agreed that Parapihtwer was certairly descended from the primitive tarsier becck, and it is very probable also that it whe ancestral to the great apes of today, and even possibly to mimkind,

Slightly later than Pardotichous a somewhat larger Priniate lived in the same part of Egyph. This likewise is known only fronn a single jaw-bone and has been called by palaeontollogiste Propligitherw, It wits alout the size of a small gitbom and secmas to represent an more advanced stage of evolution than its predecessor. Although the evidence is ingufficient to indicate ist exact position in Primate ancestry, it too may hawe been in the direct line of descent that led to the carliest mien.

It was probably daring the tirne that these ape-like creaturea were ehtatering in the tree tops of the North Atrican jungles that the higher Primates began to dififerentiate into tha two lines that led, on the one band, to the modern Old World monkeys and, on the other, to man and the four great man-like aped of collay, Bue palacontologists are not agreed 䊀 40 exactly when in Primeate cuplution the split toble place. Some believe that Pargoilfores was ancearal to both monkeys and aper, oulders that the monileys had already branched off from the riain stem at an carlier date. Dut whizt is now oentain is that by the Mocene Eppech there were several great groups of apes living in Africa, who werc not only quite separate from the monkey line of dewalopment but were the amoestors of the moderin antliropoid ape.

The three most important gencra of Miocene zpes were
 pidhater, Of these Prosontell is known only from Africh, but the other two apparently radliated nordawards and enterwards into Europe and Astia duting the later part of the
 important speciea - is known from several jaw-lones and part of a skull dispovered in the Lake Yictoria region of Kenya Colony and first deseribed by Dr A. T. Hopwosd of the Britilis Muscum (Natural History). Thes animal was smaller than a chimpanzé and is regarded by some authoritice as a clumpanzes anector. On the ollyer hand it still remained sufficiendy utispofialized to be a possible forelear of man, The second genus, Pliophthens, was a European form. It is not regarded as part of the human line of deseent but wats atmost cortainly ancestral to the moderngibbons. Finally, and most important of all, there is Drypothtas, the "tree ape", which in widely known fiom the Miocene of Europe and the Miocene and Pliocene of Asia. Dontroversy has raged around thit anmal ever sinte ins discovery, some authoritics regarding it as an ancestor of both men and apers, while others beliese that the lumasen line branched of on an individual path some time before Dypubithetw appeared. The evidenter for and against the warious thoories in based on the
specializations of the tecth and bontes in the different epecies of Dryothecw that are known, and unfortumately it must remain inconclusive until further discoveries have leen made. Mennwhile all we can gay is that Dypoptrteerr resacmbled a lightly lbuilt chimplanzee and was very posibly andestral to several of our moderi apes, even if we ourselves tre not numbered among its progeny.

We have now reached a print in our narrative where we canfairly claim to be an the threalvold of trie human history. The creatures that we shatl be destribing in the following chapter, slthough mat true mern of the genus Home, ate undoubtedly either directly andestral to man or only wery slightly off the gain line of evolution. But betore we embark on this final and in many ways most thrilling epinode in Earth history, Iet is briefly recapitulate the facts of Primate evolution as they have so far appeared to us.

The Primateg, we have seets, are the higbest order of the

Animal Kimgdom. They first appeared with the othet marnmala when the dinosares stitl dominated the Farth, and to avoid competition with their xeptilian owerloeds they remained comparatively small and restricted themselve to a tree-dwelling life This enforied seclusion proved unexpectedly to be one of the main chuses of the Primates' whigue success. Life in the treed demanded strong hands. well adapted to holding on to boughs, Jumping from branch to branela called not only for keen cyesight, but for the stereoscopic vision resulting fom the migration of the eyes from the sides of the head to the tont. Most important of All, the getat powers of co-ordination and intelligence required in mowing through the tree bops, and avoiding langer and more powerful animals, tended to protuce a considerably rupre efficient and complicated brain.
 flexibility and the power to adapt. Fortunately fle specializations made by the Primates were foot of this kitid, Agility, versatile hands, and an enlarged brais were all attributes that could be turned to good account at a later stage in their cvolution. Morcover, in seweral directions the Primates avoided sperialization altogether. They became neitherstriet catnivores nou strict vegetarians and learent to subbist on anything, that came their way, Being mainly trev-dwellert, they retained a flexibility ot movement denied to creatures who ware permanently confined to the single physical plane of the ground.

But it was uncloubtedly the increase in the size of the beatin that gave the Primates their greatest evolutiontiry adwantage. They were the first great order of creature on the Earth to specialize on mental rather than physical power. It is perhapes not too much to say that this diversion of evolutionary energy from physical into mental channels was the greatet single revolution in the history of life withe the first appearance of many-celled orgaruisth in the PreCambrian seas. It represented mot just noother epperiment within the limits of the old physical formulae but a completely new line of developmene. It was wirtually a mass to an chtirely new one.

The first reaule of the growth of the Primate brain was ant enormous speccing up in the rate of evolution. This was aided with the appearance of the first men by the increasing use of external equipment. A furdamentall characteristic of man is that he uses his brain to increase the efficiency of his body to cope with any particular situation. Whereas a tiger, for example, kille with teeth and claws which took many thousands of years to evoluc, man's brain enables him to manufacture weapons to fulfil the same function in the apace of a few hours Again, whereas many amimals adapt themsclues to oold by growing Jonger and thicker coats and are then tied to their chosen enviromiment for lije, man ean migrate at will betwen the tropies and the poles, putting on of discarding clothing with every change of temperature. Examples such as these could easily be multiplied and they demonatrate how overwhelming is the ndvimuage conlerred by brain power on those animals who are fortunate enough to possess it.

In the next chepter, efter dealing with Auflralophithetw, the 'southern ape; which occupies an intermediate position botwern apes and men, we shall enter on the age of the toplmaking Primates, when brain power finally prowed its warth and swept man to the dominukion of the Farth. Thas time includea the Old Stome Age, which extends from shortly alter the dawn of the Plestocene until about 10,000 ycars ago, and the Middle and New Stone Ages, which bring us into the age of written history. But tool-making, we may reflecs, is not confined to the chipping of stone. It is a stage of evolution that is still in its heyday and peems likely to persist for many thousands of years. Whether it is still the most wital instrument of human progress, of whether, inded, the growing efliciency of man's material equipment is not now a positive menate to his survival, is a question that must remain in abeyance until the end of our story.

MEN OF THE DAWN

Our knowledge of the man-apes and sub-men of the dawn of human hiswory is derivad from two main souects. Firat, there is the evidence of fossil remains, of which mary new and impertint discoveries have been made duting the last thirty years. Spoond, theee is the evidener of the various implements used by eatly mara in his gradual progress towards culture and civilization. The fogsts themselve ate comparatively rate and fragmentary, but are nevertheless the all-important clues to the anatomy of the different types of men and their place in the human fandy. The implemente differ from age to age and area to area, and give us invaluable information concerning man's mental progrete, They are sometimes lound in association with fowsil bones, but more often on their own, for their duribility has enalded them to survive in conditions which would have consed bones to crumble away.
The larnily tree of the true men sema to have had its roots in Africa where the great man-like appes aloo went througls the carliest atages of their developmetht. The main eentre of interest then shifted to Asia whert, 䑪 we thall see, the لrise known forebears of modern man made thwir appearance. The anoestors of these createres had probably migrated there from Africa ipt the Pliocene or eatly in the Pleistocene, but there is no fossil evidethe of intermediate Forms to show how they cyolved. The final chapter in the story belong mainly to Europes where there was first a paimitive stock that wat probably descended diretly from Africarl foreflathers and then the modern species, Homo sppiens, who seems to have migrated westwards during the Fourth Glacial Period from an undentifind Iocality in Axa. Incidentally, it is a remarkable fact that meither great apes nor men appear to have had any independent evolution in Americn or Australia. Fossil remains of men and apes ate
unknown from ether of these continents and there are no stome cultupes of certain Pleistocene date. America was first peopled with its primitive races by eastward migrations across the Bering Seraits in comparatively recent times, while the 'aborigines' voyaged to Australlia from southcastern Asia not more than 15 ,

	M0E	$\begin{gathered} \mathrm{YRARI} \\ \mathrm{AOO} \end{gathered}$	3A1N CDITURES	HDNAN TYPIF
	Age of Metalt Neolitule Mepolithic	10, 1006	Menal cultures. prot civilitation Adxancoy ancone cultura	Hown refians: Miderm racea
	Uppes Palaeolithor	75,000	Magdatorilikn Solutrenn Aurignacian	Fomp Ampina: CroMagnen Mand
	Midale Palineolithic	920,000	Mousterion	Neanderthal Man
	Lentic Pationlithic	60,0,000+	Levalloligian Arkeulean ©loctoritian Chomesutienism	Fekin Mans, Juva Man, tect

The Culentar of Human Hheory (mod be fironologicali weale)
Before we discuss the bones and implemente and try to bulld up in picture of what the tarliest men were like, it will help us if we can establish some kind of gesacral framework into which the suceessive events and discoweries can be fitted. The Çalendar of Humban History, above, is an zttempt to achieve this, but we should remember that there can be no definitive chronology for an age so Jong ago. At best we can only indicate a few inportant landmarks and show the
general sequenes in which the different human and nearhuman Primatel appeared. With the industries we corl be even less exact for they persisted for different lengths of time in different areas to that prehistoric culture, like modern civilization, was oftex mote adwanced in one place than another.

It will be seen from the Calendar that Plestorene time is entirely ocoupied by the single cultural period known is the Palaeolithic, or Old Stone Age. In the suaceeding Folocenc Epoch we have the cultural periods known as the Mesolithic or Middle Stone Age, the Neolithic of Wew Stome Age, and finally the Age of Metals, which only now in the twentieth century A.p. secms to be giving place to an age of plastics and atomie science These threc Holoepne, of "whally recent', periods cower the transition of aman froma a hunking and forl-gathering exisprace to the highly complex state of society known as civilization, and their detailed discussion hies beyond the scope of this book. Here we must theriet our= selves to the Palacolithic, which saw the latest stage of man'a physiçal evalution.

The Palateolithie Age is gencrally divided into the ectages, The Early, or Lowtr, Palseolithle began with the dawn of the Pleistocone between a million and fo0,000 yerre tgo and lasted until the "Third Glacian Period. The Middle Palarolithic covered the whole of the 'Third Interglapial Feried and the beginning of the Fourth Glacial Period. The Late or Upper Falacolithic, which sinw the sppearance of the first true men, lasted from rathor less than 60,000 years ago until the end of the Pleistocene in aloue goon me. These stages will be reviewed in this and the two lollowing chapters, but first we must tell the story of the extruordinary early Pleistocene men-ajpe known as Australoditherw, who is better qualifind than any othtr Primate for the timehamoured role of "missing link'.

In 1 gas the lossik brain east and incomplete strula of a young Frimate were found in a limestone cave deprosit at Taungs in Bechuanaland, South Arrica. The remains were examined by Profesor Raymond Dart of Johannesburg
who was excited to find that they showed a remarkable combination of human and ape-like characteristics. Professor Dart named the creature Austrelopitherus, or the 'southern ape', expressing the view that it was much nearer to man than any previously discovered fossil, and might even be in the direct line of human descent. Controversy raged over this verdict for more than fifteen years until, in 1936 and 1938 respectively, two further finds were made which enabled new light to be thrown on the problem. The first, made by Dr Robert Broom of the Transvaal Muscum, Pretoria, was of a fairly complete brain cast with much of the lower half of the skull and face and some of the teeth. The second was made quite by chance by a schoolboy who was taking a short cut over the top of a hill. He saw a skull projecting from a rock and hammered it loose with a stonc. This was hardly calculated to improve it, but again by pure chance a fragment of it found its way to Dr Broom, who set off posthaste for the boy's school. At the end of an anxious journey the boy was found and to use Broom's own words, 'drew from the pocket of his trousers four of the most wonderful teeth ever seen in the world's history'.

The finds of 1936 and 193^{8} were recognized by Dr Broom as belonging to creatures very similar to Australopicheeus, and he grouped them all together in a single sub-family, the Australopithecinae. The similaritics of these southern apes to man were now more than ever apparent, and their close connexion with human origins was recognized by many, if not all, authorities. Although the jaws were large, as in chimpanzees and orangutans, the canine teeth were much reduced, as in man, and the skulls had highly arched foreheads and comparatively large brain pans. Most remarkable of all, modifications in the bones connecting the skull with the neck made it clear that the head was placed further back on the shoulders than in apes, suggesting that Australopithecus and his cousins almost certainly stood and walked erect. This view has been confirmed by the discovery of a number of skeletal bones, including a hip bone, having a mixture of ape-like and human characters.

On the evidence that has so far come to light anthropologists have hazarded several guesses as to how these southern apes may have lived. They were certainly grounddwellers, occupying caves in low hillsides far from the great forests, and they probably subsisted by a combination of hunting and food-gathering. The food most readily available to them would have been small mammals such as hares, moles and rock rabbits, and they would doubeless have eked this out with nuts and wild berries. They probably combined together into troops to hunt the smaller gazelles and antelopes of the plains, and although they did not apparently make stone tools, they may have used clubs of wood as instruments of the chase. Even if these South African manapes were not yet men, they were certainly an untnistakable pointer to the way that evolution was going.

For the second episode in our story the seene shifts from Africa to the Far East. Here, over fify years ago, were discosered the remains of a creature which is now generally accepted by anthropologists as the most distant known ancestor of living men. This dawn man, who lived during and possibly before the Second Interglacial Period, was discovered in 1890 and 1891 by a young Dutch anatomist named Eugene Dubois. Dubois, while still a student at the University of Amsterdam, had asserted that the East Indies would be a likely place to search for carly human fossils. After trying unsuccessfully to persuade the Dutcli Government to finance an expedition, he resigned his post in Amsterdam and joined the army as a surgeon in the Dutch East Indies. He spent all his offeduty hours in hunting for fossil bones and at length, after several years of patient searching, his perseverance was rewarded with success. At the village of Trinil, on the Solo River in Java, he unearthed the brain cast of a fossil Primate that was undoubtedly of primitive human type. He named his find Pithecanthropus erectus, the 'erect ape-man', and it has since become one of the most famous and important witnesses in the story of fossil man.

Since 1936 several new discoveries have been made in

Java which have greatly added to our knowledge of Pithecanthropus. The original remains have been supplemented by a jawbone, several skull fragments, and the skull of an infant, many of them in an excellent state of prescrvation. There is now no doube that this ape-man of Java was an crect-walking Primate ancestral to some of the less advanced races of modern men. His brain capacity was about 94° cubic centimetres, which compares with 600 c.c. for the great apes, 1,200 c.c. for primitive modern races, and 8,500 c.c. for a modern European. By our own standards, then, Java man was not very bright, but he represented a great advance over any Primate genus that had previously appeared. His body was short but heavily built, and his skull, with ite receding forehead, beetling brows, and protruding mouth, was supported by an exceptionally thick neck. From the evidence of a single fossil femur it is believed by some authorities that his stance and gait was like that of modern man, but he probably carried his head projecting rather far forward from his shoulders. What Java man thought of felt we can only guess at. He almost certainly had some sort of social organization, for even apes have that, and the development of his brain in the special areas associated with speech suggests that he may have had a primitive language for the interchange of ideas. But we have no evidence whatever of his social practices, nor whether he had yet begun to be disturbed by that cosmic fear which lies at the base of primitive religion.

Before leaving the Far East we must mention one othes dawn-man who is of even more importance than the apeman of Java and is closely related to him. This is a creature identified by the Canadian anatomist Professor Davidson Black from a single tooth found in 1927 at the Chinese village of Choukoutien, about forty miles south-west of Pekin. Professor Black named his discovery Sinanthropus, or 'China man', but later discoveries in the same area of remains of over forty individuals of this type of man have led to his being placed in the same genus as Java man, with the name Pithecernhropus fekinansis, the 'ape man of Pekin'.

Pekin man, if we are to judge by the size of his brain, can reasonably claim to be the first intellectual. Professor Franz Weidenreich, who made an exhaustive examination of all the material available, showed that the brain capacity of the Chinese skulls varied from 850 c.c. $\frac{1}{}$ t, 300 c.c., with an average of 1,075 c.c. This average was 215 c.c. higher than that of the Java skulls, and the largest specimen equalled the average brain capacity of the modern South African bushman. These figures are not unimpressive for a race of men who lived between a quarter and half a million years ago.

In other respects also Pekin man was remarkable. Quarte implements found in his caves show that he was a tool maker - possibly the first in human history - while there is evidence of the existence of numerous hearths, which show that he had already discovered the use of fire. In some caves the charred bones of animals associated with the hearths give us a fascinating glimpse of his cooking activitics. There is even evidence that fried human brains may have figured on the menu of these earliest Chinese kitchens; several cracked fossil skulls show that their owners undoubtedly met with a violent death, and they have been broken open in a way that would have assisted the extraction of their contents. As no other race of fossil men of this time is known from these regions, the presumption is that Pekin man was a cannibal - and an epicurean cannibal at that.

We have now reached the period of human history when the focus of interest begins to shife from Africa and Asia to Europe, where man was destined to enjoy the most advanced stages of his development. The story of European man from the earliest known fossils until the dawn of civilization will form the subject of the rest of this book. But it must be prefaced here by a brief word on the early development of his implements, which will henceforward play an increasingly important part in our story.

The earliest tools to be recognized by archacologists, which date from early Mleistocene tince, have been given the name of eoliths, or 'dawn stones'. These are stones which
although bearing cwidence of use by man, have not apparently been deliberately fashioned by him. Gaptive apes woday will wee a bamboo otick to reach a bamana. lying just beyond their reach outside their cage Similarly, primitive men undoubtedly employed sticks and naturally fractured stones to supplement the usen of their hands. The custom of cutting teees with natural unflaked stones, which perisits today arong the alonigines of Australia, is a remarkable survival from the dawn of Pleistocene timbe when man was exclutively a tool-using, not a tool-making, arimal.

The nexy stage wis the deliberate chipping of stone to produce a sharp implement. The carliest examples of this of which we have detailed knowledge are the quatt tools of the Chouloutien cave deposits of Chink, already mentioned in conpection with Prkin man. It is fasinating to picture a neare anoestor of Pekin man casting pound for on maturally sharp stone with which, perhapt, to skin an animal he had caught, and then, urable to find one, oreating an artificial cutting edge by striking a stone egainst the rocky wall of his cave. He was, had he but known it, the first experimenter in the long tradition of human ctablumanship that has led to the motor car, the television set and the jet nero-engine.

As time went on knowledge of tool-making spread over the whole of the three continenes of the Old World and an mumber of different cultumble traditions spratig up. Some of these had probably stemmed from independent discoveries of the principle of tool-making in different patts of the world; others sesulted from the modification of a single tradition as it spread into new areas and was ablapted to specinl uses by different groups of men. Apart from the Choukoutienian culture of Pekin man there were threc main traditione of tool-miking in Lower Palacolithic times. These were named respectively the Abbeville-Acheulean, the Clactonion, and the Levalloisian, anter the lecalitien where chatacterstic examplea of theis tools are commonly found. But the cultures themetwes olten had an enormous range. Thus hand-axes of Ablueville-Acheulean type are foum in such widely separated ayeas as gouth Afriea,
south-eastern India, and southern England while Leval. loisian flake tools are found all over Europe as well as in many part of Africa and Asia.

We have no space here for a detailed discussion of the tools in these various cultures, which would in any case be tedious exeept for the specialist. But it is important to note that their evolution was well under way long before men of our own species appeared on the Earth, and that a Lower

Implements used by carly man. I and 2 : Eoliths. 3 and 4 : Choukoutienlan. 5 and 6: Levalloisian 7: Abbevillean. 8 and 9: Acheulean

Palaeolithic hand-axe, primitive as it may appear to us today, represented in its time an extremely high level of cultural achievement. In the following chapters we shall see how these earliest kinds of tools progressed in the direction of greater efficiency and refinement. Meanwhile we should not forget what we owe to our ancestors in the dawn of human life. Seated in their caves and jungle squatting places, laboriously shaping primitive tools from the intractable stone, they were paving the way for all the richly varied crafts and industrics of the modern world.

CRAPTER 24

THE FIRST EUROPEANS

Man has apparently mate his home in Europe from carly in the Pleistocene, lyut until the beginning of the Third Interglaçial Period - say 180,000 years ago - our knowledge of him depends almost entirely on twa enigriatic and fraymentary fosils. Thene are a heavy jawbone and eceth found in 1907 by Dr Otto Schoetersack in a sund pit at Manuer near Hedelberg in Germany, and the thull atnd jawhone of the notorious Pilddows man of Sussex, who has caused more controversy and amoyance among anthnopologiste than any other single speciment in the record of fossil man.

The story of Piltdown man bis worth recounting in some detail For it wall exenaplifies sonte of the problems of anthropolagical ressateh, and is not without a surprising derathentemt. One day in rgol a Lewes solicitor named charles Dawson wat waiking along a farm road near Piltdown Common in Sussex. As woll as being a lawyer he was asis atmateut anthropologist and antiquary, and he was therffore interested to observe that the road was being mended with as type of brown flint not usually found in the districh, He enquired about the source of the flints, and learmt that they came from a mearby grawel pit well ousside the limit shown on the geologieal map for the eccurrence of this kind of stone. Much interested, he visited the pit and asked the workmen there to ketp a good look-out for fosils. A tew daye later he returned and one of the workmen handed him a [ragment of an unusually thick human akull-bone. This was the first link in the chain that Ied eventually fo the reconstruction of Piltdown man.

Encouraged by his suteess, Dawsen returned to the site again and again. He went throskh the deposit from one end to the other, and exharted the workmen to continae their scarchins; but unfortunately no fisther finds were made. Thuce years Iater, however, he was isspecting one of the
dump piles when he came acrots part of the forchend of the skull, including the upper corner of the eye-socket. His perseverance being thus rewarded he devided to sulnnit his finds to the Fimmous palaedentolopgist Sit Arther Sruith Woedward of the British Musceum. Snith Woodward agreed on the imutense importance of the find and the two meth imimodiately intensified the scarch with the aid of 'specially hived workmen. Next tpring more parts of the upper portion of the skull came to lighe on the dump, and Sanith Woodward himself found a piece of the back of the hend. Dawsons searching an few feet from the apot where the first Find had been made four year previousty, recovered half of a lower jawbone. Filddown mann was beginning to take shape, and int figi, aftat Smith Woodwatd had made a reconstruckion of the skult, a detailed description of it was givers to the scientific world.

Immediately, the Piltedown sleull, whose nwace hiad been" named Eoanthodut, or 'dawn mann', Hecame the subijoct of violent contreversy. The age of the find was generally regarded as early Pleistecene, but anthropologists were puzzled by the extraordinary dififerences between the thull itself and the jawbone associated with it, whereas the former had the contours and general characteristics of mann of fairly advanced type, the latter was virtually indistinguishable from the jawbone of art ape. This gave rise bo che suspicion that, alchough tha shull and the jawbone had been found so close together, they were not correctly anociated. The scientific werld was diwided into two caraps. Smith Woodward, Sir Arthur Keith, Sir Grafton Elliot Smith, and other diatinguished anthropologistes, hotly defended the correctness of the asgeciations. It would surely be too great is coincidence, they argued, that the jawbone, without the skull, of an appe, andl the skull, without the jawhone, of a man should bo found within a few feet of each other. They must, in fact, booth belong to a previously uoknown type of sub-man with an advanced type of skull and an exceptionally primitive jow. Other equally eminent authorities disagreed with this view. They falt that the different
chatacteristics of the skell and the jaw made it impossible to believe that they both belonged to the same individual,

Ther in 1915 an ewent oncurred which greatly stremgthened the dairns of the Smith Woodwand scheol of thought. This was the discovery by Dawnon, at a place two miles away from the originall sitc. of another Eowntropes akull fragoent and a lower molar tooth similar to the peeth found in the Ferst jawbone. It soemed too much to believe that this second find, so exactly oonsistent with the first in the association of an ape-like tooth with part of a masur-like skoull, should also be the result of coincidernce. Even the mowt sceptical began to waver and the dawn man of Piltdown, strange minture though he was of man and apm, was generbaly admithed to have enciblished his authenticity.
But atis was not the end of the story, Several authorities, especially in America, still could not believe in the correctness of atsociating the skull and the jaw. As it happened these die-hand sceptics were eventually to hawe the last word, for a thixd explanation of the Pilldown problem had not yet becn considered. It was deft to Dur J. S. Weiner of Oxtord to propose openly what a number of anthropologite had alreidy suspected in private $=$ that the jawwone of the Pilldown abull was none other than a deliberate and conningly contrived fake.
In as special bulletin sesued by the Beitich Museum in 195g. Dr Weiner, with his two colleagues, Dr Kenneth Oakley and Ptolessor Le Gross Glarks, told of tegts carried out on the jawbone which had conelusively proved that it belonged to in modera chimpanzee or orangutan. It had been carefully disguised to match the skully which was likewise prowed to be in forgery. The skull fragment and cooth located in the second find ware in all probability part of the firat specimen and had been deliberately 'planted" two miles away to mislead the inwestigators. Early in 1935 Dr Weiner broughe aut a book on the forgery which suggested that Dawson himestrmust altrost certainly hawe been the perpetrator of this fartastic hoax. Whether or not this is ever finally proved, the deception ikself, in the words of the
investigators, was 'so extraordinarily skilful . . . as to find no parallel in the history of palaeontological discovery'.

To turn from Piledown man to that almost equally tantalizing fragment, the Heidelberg jaw, is to step aside for a moment from the possible course of our own ancestry and to consider a race who were very nearly, but not quite, true men. This is the famous race of Neanderthal men who were widely spread over Lurope during the Middle Palacolithic before the climax of the Fourth Glacial Period. The Heidelberg jaw, which dates from the beginning of the Pleistocene, is the earliest evidence we have that men of Neanderthal type were appearing in Europe. In itself it tells us little, but when we reach the deposits of the Third Interglacial Period there is an abundance of fosil remains to help us reconstruct the appearance of the Neanderthal men and the way they lived.

The name Neanderthal man is loosely used to cover nearly a dozen related races, including the ancient Heidelberg man and similar forms who lived in far later times in Europe, Africa and the Far East. For the purposes of our story, however, we shall restrict ourselves to the typical Neanderthaler who lived in Europe for 100,000 years before the first appearance of men of our own species about 50,000 to 60,000 years ago. Neanderthal man, like the race of true men who later supplanted him, was probably of Asiatic origin and a descendant of ereatures like the ape-men of Java and Pekin. Although an aberrant side branch of the true human stem he belonged to the same genus as ourselves and has therefore been given the name of Home neenderthalensis. When he became extinct at the beginning of the Fourth Glacial Period he had already acquired several of the social customs, such as burial of the dead and a form of worship, that we normally associate with Homo sapiens.

The fossil evidence on which our knowledge of Neanderthal man is based oceurs in many parts of Europe, especially the west. The classic find, which gave the race its name, was made in a cave in the Neander Valley near Düseldorf, Germany, in 2856, and consisted of a skull cap and a few
ribs and limb bones. Since then many far more comprehensive finds, including several skeletons, have been made in France, Belgium, Italy, the Channel Islands, and elsewhere. The richest scource has been the Dordogne region of France, and especially the caves and rock shelters of Le Moustier, La Ferrassic, La Quina, and La Chapelle-auxSaints.

What did these human cousins of ours look like, and how did they live? Fortunately their bones and implements help us to give a fairly full answer to these questions. In stature the Neanderthal men were very short and stocky, the males averaging just over five fect in height and the females rather less. Their stance was primitive and their gait slouching, for they lacked the bend of the neck which in man brings the head into an upright position, and their thigh bones were curved forward in compensation. The skull was remarkably large and thick-boned, with a receding forehead and a massive bony ridge over the eyes. Compared to the high, narrow skulls of modern men it was very broad and flat. A big protruding mouth, and the almost total absence of a chin, added to the primitive and brutish aspect of this strange shambling creature who preceded us in the domination of Europe.

Yet despite his unprepossessing appearance we may be surprised to learn that the brain of Neanderthal man was actually langer than ours. The middle-aged Neanderthater whose remains were found at La Chapelle-aux-Saints had a brain capacity of $t, 625$ c.c. - considerably more than that of the vast majority of European men alive today. Size, however, is not a reliable guide to quality, and the dimensions of the Neanderthal brain do not necessarily mean that he was brighter than weare. On the other hand, there is no reason whatever to think, as some authorities have suggested that Neanderthal man was incapable of a high standard of co-ordinated thought. In fact we have reason to believe that within the context of his age he had made considerable progress in this direction.

In addition to the evidence of fossil bones the stone
industry of the Neinderthaters is a valuable sourte of information about them. This industry is termed the Mousterian culture, after the French village of Moustier where Neanderthal men once made their homes in the caves. The tools, although still not remarkably advinced, are and improvement on thote of earlier typee of man. In addition to handanes, there are sharip-edged aide scrapers for dreming skins, and pointed flints that wete obviously used with wooden shants as speare or darts. There is no evilence that the Neanderthiners had the bow, but balls of limestone formed in a cave at La Quina suggest that they may have learnt how to hunt with the bolas. This is a misusile consisting of

Impleanentirnt one Mouncrian coltura
two or more stoall weighes joined by a cord, which is thrown at the quarry with the object of entangling it lege and bringing it down. It is still used in Patagonia and elsowhere in South America.

In the equrly part of the Middle Palaealithic, when conditions were warm, thate strange primitive cousing of ours probably wandered over the great Eurepean plains hunting antelope and other amall game, and perhapa oceasionally bagging a hippopotamus, rhinocercs, or elephant. Their homes wete simply squating places on the banks of stecams, with no protection from the elements exeppt a wind-break made of bushet or an minal skin roughly fastened between two trees, Here they lived together in fanily groups led by the soost wigorous male. Eut although on occasion two or
three family groups may have combined together for their mutual advantage, we have no evidence that there was yet as large or complicated a social unit as the tribe. One of the sadder lessons of history is that the idea of co-operative effort seems to be repugnant to human beings, and is only achieved when prolonged discord and misery have finally proved its value.

As the warm conditions began to give place to the rigours of the Fourth Glacial Period, and the woolly mammoth and woolly rhinoceros replaced the vast herds of tropical game on the European plains, life became hard for the Neanderthalers and they took to the eaves and rock shelters in the hills. We can pieture them huddled round their fires, scraping the skins which by now they had learnt to wear for warmth, or putting a new edge on their weapons for the forthcoming hunt. We can even tell that they performed these tasks with their right hands like ourselves, for the left side of their brain was more developed than the right, and it is the left of the brain that controls the organs on the right of the body. When the Neanderthalers went in pursuit of game they probably lay in wait, like modern tribes, at fords and water holes, attacking the animals as they crossed or drank. They may even have dug eraps, although there is no evidence of this, and when game was scarce they were doubtless glad to share the kill of the eave lion if they were fortunate enough to come across his leavings.

The Neanderthal hunters did not eat at the scene of their kill, but brought their food home to their caves. We can tell this because the cave floors are often littered with the bones of animals, some charred with cooking and others broken open for the obvious purpose of extracting the marrow. It is probable, also, that the meat at these orgies was augmented with fruit and wild berries, for the Neanderthalers were certainly no more exclusively carnivorous than their modern suecessors. We may hope that the strong members of the group provided for those who were aged or sick, but it is only too likely that in difficult times when starvation threatened, these useless members of the family were driven out to
dice There was no place for sentimentality or altruisnt during the frecaing eenturies of the Iee Ages.

Yet that this did not always oceur, find that Nentnderthan man had tome quality of reverence in his sawage heart, is shown by the woll-authenticated Fat that he 䉼nutimes buried his dead. Onc of the best known Nuanderthand skeletons is of d yourie man who has been suetehed out with his head resting on his right atm, and both armand hextd pillowed on a carchully gathered pile of fints. A hand-axe plated by his side suggests that the Nenderthalers inlready held the common belief of later iemes that the dead go to another world and may resed the weapons and implements they used on Earth. In andlition to the evidenee of htuis and other examples of deliberabe burial, it secms likely that Neanderthal men had some instinetive religious beliefs. which toole whape in formal observances. In one cave, for exaiziple, there is an reatly arvanged row of skulis of the giant cave bear, suggesting that this place war used is a slimine. Man's capacity for religious emotion, already foreshadowed by these eriigroatic symbols in the Nefonderthal caves, was soon to be a great power for good, and tor evil, in shaping him destiny,

The extimetion of the Neanderthal men at the climax of the Fourth Glacial Period seems to have been sudded and complete. The revson for their disappenance was doubtless partly the increasingly severe conditions that accompanied the advancing ice shoets. The numbther of caves and rock shelkers was limited and many Neanderthalers who were unabile to 籼ure one doubtles died of exposure. Even thase who managed to establesh and mainutio their right to a home were forced to take part in an increasingly bitter struggle for food, Under the stratin of this severe conapetition it is not surprising that the numbers of Neanderthal ment gradually dwindled, and that the surwiwors found life almost intolerably hard.

But in addition to thise natural forges the Neanderthalerg were astailed by an enmemy from another dieection. At the glaciers reached their peal and began bo recede, it seems
that a new race of men was beginning to infiltrate slowly into Europe from the East. The men of this race, as we shall shortly see, were much more advanced than the Neanderthalers, and they quickly dispossessed them of their caves and established their own culture over the greater part of the European continent. Condemned to a fugitive existence in remote areas with no protection from the bitter cold, the last of the Neanderthalers soon died out, thus bringing to an end a dynasty that had lasted over 100,000 years. The future of the human race lay in the hands of the newoomers, the men from the East, who belonged so the spocies Homo sapiens and were therefore the ancestors of us all.

CHAPTER 25

HOMO SAPIENS TAKES THE STAGE

Apter the disappearance of the Neanderthal men from Europe at the climax of the Fourth Glacial Period, the principal actors in the drama of Earth history are men of our own kind. Every human race since the dawn of the Upper Palacolithie is ascribed without distinction of size or colour to this same great species of Homo sapiens, or 'wise men'. These men were distinguished from other members of the Primate group, and from their own remoter ancestors, by several important characteristics. For instance, they had a completely erect skeleton and were very much lighterboned than earlier types of men. Their skulls were narrow and vaulted, with high brows and exceptionally thin walls, while their faces generally lacked such ape-like characters as the heavy brow-ridges and protruding jaws which were typical of their predecessors. Although their brains were no larger than those of the Neanderthalers, they were developed in different areas, giving them greatly improved powers of reason and intelligence. This increased brain power stood Homo sapiens in good stead in his battle against the harsh conditions of the Ice Age and his physically stronger Neanderthal rivals.

Despite the suggestion made at the end of the previous chapter, it is not known with complete certainty how the first true men made their entry on to the European stage. Some authorities even believe that they may have been directly descended from their Neanderthal predecessors, but their anatomy makes this extremely unlikely. Another view is that they had been present in Europe from inuch carlier times, and had developed along parallel lines to the Neanderthalers from a forebear of a quite distinct type. But if this were so, it is odd that no record has survived of the carly years of their development, while Neanderthal skeletons are comparatively numerous. By far the most likely theory,
therefore, is the one already outlined - that they made their way into Lurope from Asia sometime between fifty and sixty thousand years ago, and displaced the Neanderthal races then in occupation.

We are still in the dark concerning the early development of modern man in Asia because of the limited amount of research that has been carried out there. It is, however, reasonable to suppose that he was a direct descendant of some such creature as the ape-man of Pekin. There is nothing in his skeleton that would be inconsistent with this line of descent, and there is every likelihood that further researches in western and central Asia may lead to the discovery of intermediate forms that will bridge the gap.

Before describing the first appearance of true men in the European fossil record, a word must be said about the aspect of the world during the Fourth Glacial Period. The continents had by then assumed their present form, but there were several important, although minor, topographical differences. The Mediterranean, as we have already seen, consisted of a pair of gigantic inland lakes, and Europe was joined to Africa by two land bridges, one running from the toe of Italy across Sicily via Malta to Tunisia, the other at the Straits of Gibraltar. The North Sea was largely dry land, and the Thames joined the Rhine somewhere to the east of the present Straits of Dover. At the climax of the Period, when the Neanderthalers were giving place to true men, the Scandinavian ice sheet extended southwards to Berlin, and glaciers from the Scottish highlands covered nearly the whole of the British Isles. On the frozen wastes bordering the ice fields dwelt the musk ox, the steppe marmot, and the arctic fox, while the seals of the sub-Aretic waters ranged southward to the coasts of Spain. But if any one animal was characteristic of this time it was the reindeer. Great herds of these creatures wandered over the European plain, living on the lichens and mosses of the inhospitable tundra, and thernselves forming the principal quarry of Homo sapinus. In fact, so vital were reindeer to the economy, and even to the very existence of the first true men, that the closing phase
of the Palacolithic is often referred to as the Reindecr Age.

Although ice, snow, and tundra were typical of much of this time, the grim climate was oceasionally punctuated by warmer and gentler spells. During these interludes the reindeer retreated to the north, followed by the woolly mammoth, the woolly rhinoceros, and the saiga antelope, which still survived in Western Europe up to 20,000 years ago, although in diminishing numbers. The tundra was replaced by rolling prairics across which roamed great herds of bison, aurochs, and wild horses. Later, forests sprang up, consisting mainly of birch, aspen, and conifers, and there were increasing numbers of red deer. All these animals formed the prey of the first true men at different times in the closing centuries of the Palacolithic Age.

Now what of the men themselves? How did their culture differ from that of their Neanderthal predecessors and what were the stages by which they evolved from savagery toward civilization? It should not be thought that the neweomers from the East, although they belonged to the same natural species, were all of identical type. The European men of the Reindeer Age varied as much among themselves as do the European races of today. These differences are apparent not only in their fossil bones, but in their industries, and in the higher manifestations of culture which were gradually added to their purely utilitarian activities.

The most famous, and in many ways the most typical, early representative of Homo sapiens in Europe was the physical type known as Cro-Magnon man. The first Euroреan example of this type was discovered as long ago as 1823 in the Paviland Cave of the Gower Peninsula, South Wales, associated with the bones of rhinoceros, bear, lion, hyena, and elephant. Its significance was not recognized, however, and it was not until 1868 that the discovery of five complete skeletons at the small rock shelter of Cro-Magnon, at the village of Les Eyzies in France, brought fame to this early ancestor of ours, and provided him with a name.

The Cro-Magnon skeletons were of an old man, two
young men, a. wortan, and ar child, all in an excellent state of preservation. They revealed a rate of tall, upright men, with relativelyr long ldeg and Etraight thigh bones, only superficially dilterent lrom the typical Europeans of today. The brain was fully as large as in modern races, that of the old man having a clapacity of I, 6 oo ec., which is well abowe that of most twentieth-century adults. This find, which came onily twelwe years alter the ciscovery of Neanderthal man and lest than a decade alter Darwin published The Origin of Species, caused a great furote and was of immerse help to the cause of the cvolutionigts in the bitter religioscientific controversy that was then at its helight.

A tecond race of men, rather like the Cro-Magnards but shorter in stature, wats the subject of a later and even more spectucetter find at Predrmost in Moravia. This areansems to have been an Upper Palaedither humting stunion situated on the highway of great seasonal rugrations of big garme, Over a hunsdred difierent canps have been formonsince it
 miammoth bones bear wimess to the prowess of the hunters In the early $88 g o s$ De K. J. Maka unearthed here 3 communal tomb containing the bortes of wo last than twentif individuals, including mens, womer, and childres. The tombs which appeared to te the Pallacolithic equivalent of the modern fomily wath. was flanked on one sitde by a row of mammoth shouldet-blades, and on the other by the lower jaws of mamonotheplaced in en upright position. The burial had obviouly been carried out with great reverence and ceremony, showing that these people were moved to awe and wonder by the mystery of death.

The Cromagnon men of Fratiter and the mammoth hunters of Moravia, are regarded by mogst authorities as the ancestors of medern Europeane, but where 5 no such unanimity about the skatus of a third type of man who lived fen Upper Peilacolithic tippes, This type is represented by the famous Grimaldi skeletoms, which were found in a cave llabwh , 4* the Grotte der Enfants, near Meaton on the Franco-Italian frontere. The cave was so ramed becatse in

Sheleton of is woman and a youth feund in the Grotte da Enfayly 解 Grimalda

1874 and 1875 two nearly complete children's skeletons were discovered there, but their skulls were so badly smashed as to be of litule use for identification. Then in 1900 under the patronage of the Prince of Monaco further researches revealed the skeleton of an old woman and a youth of about sixteen years of age. The skeletons were buried side by side, the woman with her arms doubled under her chin and her knees tightly drawn up to her belly, the boy in a loosely flexed attitude with arms and legs half bent. The boy's skeleton was painted with red ochre, a common ceremonial practice in burials of this time, and there were numerous artifacts dating from the very earliest years of the Upper Palacolithic. But the most unexpected feature of the burial was that the anatomy of both the skeletons seemed to many authorities to be distinetly negroid in type.

Controversy over the status of Grimaldi man has now been raging for more than fifty years. Those who uphold the negroid theory point to the bulging forcheads of the skulls, and their somewhat projecting jaws, both characters more typical of negro races than European man. They say that the Grimaldi skeletons undoubtedly belong to a negroid stock who migrated into Europe from Africa over one or other of the two land bridges that traversed the Mediterranean at that time. The opponents of this theory base their objections on other technicalities of skull strueture. They point out also that no negro remains have been found in North Africa, and it would anyway be extremely unlikely that a negro race enjoying a congenial sub-tropical climate would voluntarily migrate northwards into the frozen world of the Ice Age. The rights and wrongs of these professional wrangles need not concern us here. Enough has been said to show that Homo sepiens, although divided into a number of different races, was firmly established in Europe well over \$0,000 years ago.

So much, then, for the physical aspect and racial variations of the first true men. But what of their mental development as reflected in their culture and social organization?

Three main stages of Upper Palacolithic culture are recognized, named after the sites in central and south-western Franee where characteristic artifacts have been found. The earliest of these is called the Aurignacian, after a cave at Aurignac, forty miles south-west of Toulouse. Second comes the Solutrean, from the village of Solutre, near Macon, where there was a famous camping ground of primitive

Implements used by Upper Palacolithic man, Including fint arrow beads, points, burins, pins, harpoons, and needles; the engraved reindeer antler at the bottom of the picture is probably an arrow-otraightener
men. Finally there is the Magdalenian, named after the rock shelter of La Madeleine, near Tursac in the Dordogne, which brings the story of mankind down to the end of the Old Stone Age, and includes the finest flowering of prehistoric art. We should bear in mind, however, that many local variations of these cultures are recognized, the Aurignacian in particular being divided into three well-differentiated stages; also that, unless implements and fossil bones are found in direct association, it is an exceedingly difficult task to ascribe a given culture to a particular race of men.

For these reasons we must restrict ourselves here to an outline of the general trend rather than involve ourselves in a tedious discussion of the criteria of classification.

All Upper Palaeolithic tools and weapons show a great advance over the Mousterian culture of the more primitive Neanderthal men. They are in general smaller and more finely worked, and are specialized for a much wider range of uses. The typical implement of the early Aurignacian hunters was a flint knife, one side razor sharp, the other blunted and curved over to the point. As time went on, this

Figurines made by Upper Paliseolithic man
was supplemented by a widespread use of bone, antler, and mammoth ivory for the making of polished pins or awls and beautifully fashioned spearheads. Cave walls of the period are decorated with pictures of animals, and sometimes of men, while human figurines have been found near Aurignacian hearths from the Pyrences to Russia. At some sites skeletons have been discovered with necklaces of perforated shells and animal teeth still in place, while red ochre was widely used for the adornment of the body. Although most of these non-utilitarian practices were probably rooted in magic and superstitition, they nevertheless show the dawn of an artistic sense - all an important landmark in human evolution which will be more fully discussed in the next chapter.

The Solutrean period which followed the Aurignacian whe of comparatively short duration, but it siw a great advance in fint technique. Itw characteristic implement is the 'laurel leaf? flint -a thin, flat, flaked blade used toaisaly for spear and atrowheads. The presence of arrowheads thows titat the men of this phase luad already dincovered the sererets of the bow, and the bones of over ron,000 horese at the type site or Soletre give us a clue to their main quarry. Less is known of their art than their material culture, but the Tuc diAudubert cave in the Fyrenees is famous fou fes models of clay bison, tometimes atoribed to the Solutrean phase, while there is a decorative frieze of horser, bison, and ibex in the sock shelter of Le Roc, Clutente; which is also persibly of this period.

But for the finest flowering of artistis achiewement as well as the greategt refinement of material culture so Ear, we must go to the Magdalentian phase, which began in webern Europe some time before 15,000 n.c. Thir wat the last gad most splendid episode in the cultural advance of Palacolithic mant, and many of its achievementa have not betrisurpansed down to this day. It is chatracterized by a greeat wealth of implements in bone, reindeer antler, and ivory, including modles, harpoons, awlo, hammers, and shafistheighteners, while the record of cave painting and engraving culminates in the mighty polyctione frescos ol Lascoux, the supreme artistie achieverneat of the pelhistoric warld. Only in the making of fline implenvents is the Magdalenian phase inferion to some of it predecessors. The Magdalenians tended to neglect flint in favour of bone and other more tractable materinls, and the tradition of Hint workenanship did not make new advances until Mesoliphic times, aboust 8000 म. 0

The life of the Upper Patacolithie inen, like that of the Neanderthalers, was essentially based on hunting. But the Family group had now given place to the tribe, and cooperative effort led to far greater efliciency itt the capture of game. In summer the huntert were largely nomadic, pitching their tents of skins near the paths of the migerting herds

Their life centred on the bearth, an open fireplace surrounded by a circle of stones, the fire serving for cooking and for keeping wild animals at bay by night. If game became scarce it was an easy matter to strike the tents and move to a new area.

In winter life became more static. If the country was open the hunters went to earth in semi-undergtound dwellings roofed with turfs and skins. If they were near the hills they sought refuge in the rock shelters and caves. Game was scarce in the bleak Ice Age winter, so probably the autumn saw a great drive by the hunters to build up a surplus store of meat. The cold would have preserved the meat for many weeks if it was piled in the open near the caves and protected from scavenging animals by a barricade of thorn bushes. In addition to these reserves the hunters would certainly have made forays after musk ox, reindecr, and mammoth, while there is evidence in the cave paintings that smaller animals may have been caught in traps and snares. If a particularly bad year brought the tribe to the brink of starvation, they may possibly have resorted to cannibalism, although there is no direct evidence of this as in the case of the earlier apemen of Pekin.

This brief sketch of human life between 80,000 and 30,000 years ago completes our story of the Palacolithic Age. It also completes the history of man as an animal, for, as we have seen, the Palaeolithic hunters were physically indistinguishable from ourselves, and belonged to the same great species, Homo sapiens. The succeeding Mesolithic and Neolithic Ages, which bring us to the dawn of written history, saw no further changes in man's bodily evolution. Yet it would be impossible to bring this book to an end without some discussion of the immense revolution in thought that began in the Palacolithic Age, and is still continuing in our own times. This revolution has been associated with the dawn in man's consciousness of an awareness of his own nature and problems. It is manifested in the pursuit of knowledge as an end in itself, in the development of artistic sensibility, and perhaps, above all, in the growth of a sense of values. In our final chapter we must examine the origin of these strange mental and spiritual phenomena which have emeryed in the final phase of Earth History. They are at ruuch in part of the story as the record of geologieal and biologicall change, and there can be wo hope of finding a meaning in ewolution without taking them into account.

CHAPTER 26

SCIENCE, ART, AND RELIGION

As we have seen in the foregoing chapters, man owes his evolutionary success almost entirely to the precocious development of his brain. As his brain became larger and more complex, his powers of reason increased, and with them the capacity for what is generally termed 'conceptual thought'. This can be defined as the ability to abstract general ideas or concepts from everyday activities and to retain these in memory as principles to be reapplied on future occasions. The powers of conceptual thought not only helped Homo sapiens to perform his utilitarian tasks but allowed him to form images of the ends towards which he was labouring. This marked the beginning of an entirely new chapter in evolutionary progress. In evolving man, Nature had produced an organism with a mind that was not only ideally planned to contral its flexible and well-adapted body, but was actually able to escape into the realms of abstract thought.

The earliest manifestation of man's powers of conceptual thinking was the extension of the body's possibilities by the characteristically human activity of tool making. An ape may use a stone to crack a nut, but only a man will deliberately fashion an implement to deal with some eventuality not irmmediately apparent to the senses. Tool making was followed by an increasingly rational approach to the problems of obtaining food and shelter. Man learnt to extend his range of activities and his adaptability to his environment by making a wide range of specialized equipment. He gradually learnt also to harness the forces of Nature for his own ends. For example, the means of controlling fire for warmth and cooking were discovered at least as long ago in human history as the way to make tools. And all these activities showed a growing capacity for abstract thought, an ability to detach the mind from immediate
needs and to think rationally about the principles of things.

The activities associated with the growing power and sophistication of the human mind are generally grouped under three main headings - science, art, and religion. In historic times these spheres of thought have tended to become very largely distinct, and often, in fact, hostile to one another. But this has not always been the case, for primitive thought cannot be divided into such clearly differentiated compartments. In discussing the science, art, and religion of the Old Stone Age we should remember that we are only using these terms as convenient labels, for their fields overlapped and merged into one another far more than they do today.

Science in its broadest sense is defined as learning or knowledge. In terms of this definition it can be said to include both art and religion, but we shall here use the word in its more restricted sense - that is, as a means of knowledge of natural or physical phenomena and the immediate principles that govern them. As might be expected, the earliest steps in man's mental evolution were made in this field. The first man to discover the secret of kindling tinder from the frictional heat of a rotating stick was demonstrating a scientific principle. With each repetition of this aet he was reapplying the principle to achieve a similar utilitarian end. It is easy to see how in time the idea of the principle as such was abstracted from the series of fire-making acts. Thus man moved from awareness of how certain specific objects behaved to a knowledge of the principle of combustion. And in doing this he had conceived a scientific idea.

A study of recent history suggests that art and religion in their most advanced forms belong to a more sophisticated level of mental development than science, but they too had a utilitarian origin. We have told how the men of the Old Stone Age made engravings and paintings on the walls of their caves and fashioned models of animals from clay. At Altamira in Spain, for example, the roofs and walls of the caves are covered with magnificent polychrome frescos of

A red cow with a black bead from the Lacaux caves

A buon from the Altamirn caves
bison, horses, red deex, and wild boare, while at Lascaux, mear Montignaci in Frates, there is a huge shineceros and tnany fithely executed paintings of horses and ginnt black bulls. These splendid works of ant wete once regarded as ewidence that prehistoric man had a highly developed aesthetic senae, and spent his leisure hopro deconating his cave walls for the plensure of himenelf and his fimily. More recenty, however, this wiew hak had to be abandoned, for many of the paistingt ate foutd in chambers deep in the hillsides, which could not postibly have been used for living quarters. Alsoy in some chwes, the paintigge have been placed one on top ofanother without any apparent reason, and it is diffiewta to believe that this woutd have beer done if the main objece had been the pleasure of the beholder.

The explanation of these pictures now generally accepted is that they formed part of the rituals of sympathetie magic. This is the activity, common amoty primitive lounting races even today, of identitying animals of the chase with their wisual representations. Defore going to the hunt prehistoric man probably held a ceremony in some allegedly sacred tpot decp in the caves, where magic spells were woven round the images of manmoth, bison, or reindeer. Spears were thrown at the painted symbel in the hopes that this would give the huriters the magie power to strike down the living creature. A form of this riagic idea survived as recently fas the last century in England, when simple country folk still believed that pine sluck into the wax effgy of an enemy would bring wing bad luck, or even death.

Despite this matical aspect of the first art there is apparent in many prehistoric paintinge a strong sense of formal beguty, which foreshadows the great artistic achievements of later age wher the atesthetic impulfe hand transcetided ite matherialistic origins. It il eveda possible luat some of the pietures in the open rock sheltars, ats opposed wo those painted deep in the caver, had a purely decorative intent, And there can be little doubt that some of the carvings done on the handle of bone and ivory implements were placed there to satisfy a diainterested ereative urge.

From art we move to religion, which in its purest form is the most abstraet, and also the most highly evolved, attempt at knowledge so far made by the human mind. This, 100 , had utilitarian beginnings, but, like art, it transcended its original function as man gradually aehieved a higher degree of mental evolution. The main impulse behind the formation of the earliest religious beliefs was probably fear. Once the immediate problems of survival had been solved, prehistoric man began to reflect on his own nature and the meaning of his life. In this he differed from his animal forebears, whose mental limitations caused them to live for the day or the hour, with no other pre-occupation than the source of the next meal and the pleasures or excitements of play, sex, or a languorous siesta in the summer sunshine. Man was oppressed by his loneliness and his apparent insignificance in a cold and hostile Universe. The forces of Nature filled him with awe and apprehension. And as a frightened child seeks comfort from those omnipotent beings, its parents, he turned to gods made in his own image, or in the image of the natural powers that seemed to control his life.

There was also a sound biological reason behind the religious beliefs of primitive man. Survival in a world moving from domination by brawn to domination by brain demanded a growing emphasis on co-operative effort. This shift in emphasis required the discipline of law. And the caboos associated with primitive religion, however naive and irrational they may seem to us now, were the beginnings of a legal code aimed at the survival of the species.

Naturally enough the first religious beliefs, and therefore the first laws, found their sanction in the wisdom and experience of the oldest members of the tribe. Veneration of the Oid Man, and of the spirits of the tribal ancestors, was therefore a common factor in primitive thought. The leader of the tribe, elderly, bearded, and a living testimony to the survival value of his own attitude to life, was generally aceepted by those with more limited experience as a symbol of wisdom and power. Primitive religion shows unmistakable evidence of this patriarchal infiuence on the human
mind, and the anthropomorphic element persists even in more highly evolved creeds. For instance, no fair-minded Christian can fail to recognize survivals of primitive seligious thought in the Jehovah of the Old Testament ; stern, jealous, didactic, quick to anger and ruthless in punishment, he retained many of the savage characteristics of a tribal god. It was not until nearly 2,000 years ago that western religion was emancipated from fear of this formidable being and evolved a philosophy of compassion and tenderness.

But even for the most unsophisticated minds the Old Man was not a complete and sufficient answer to the problems that came with self-awareness. The forces of nature, which played such an important part in the life of early man and still do in the life of primitive communities, remained beyond the control of purely human minds. The Old Man or his deputy, the witch doctor, might be regarded as the representatives of the tribe to intercede with these forces, but the forces themselves still retained a terrifying independence. Thus they $t 00$ became regarded as gods, to be thanked or placaied by mortification and sacrifice. There was a sun god, and a rain god, and a god or goddess of the earth and the sea, each of whom played a vital sole in the beliefs and activities of primitive men.

The belief in the Old Man and in the diverse natural gods who were seputed to control the workings of the external world survived even after the growth of civilization. In pagan systems the natural forces were themselves all-powerful and the gods personifying them were directly worshipped. In monotheistic creeds faith was pinned on an idealization of one individual, who had magical powers to intercede with every hostile force that might threaten the well-being of the group. The wiech doctor, the prophet, the religious leader, all played a vital role in the infinite variety of systems that sought to reconcile man to his loneliness in a hostile, or at best, an impersonal Universe. From these humble beginnings steramed the whole fabric of modern philosophical and religious thought, which is still struggling, although we may hope with increasing assurance, to answer

A Guids to Earth History

those fundamental questions concerning the significance of the Universe and human life which already preoccupied our Ile Age Ancestors.

This book does not aim to present a personal view of Earth history but, to conclude, it does seem neeessary to make a few observations on the way human thought has evolved since the end of the Old Stone Age. Science, art, and religion arose, as we have just seen, as part of man's evolutionary progress towards self-awareness. They were attempts to increase his knowledge of the Universe, or to release him from the fear that accompanied that knowledge; and although each had its own paraphernalia of magic and superstition, they formed part of a single mental process. We have already said that with the passing of the centuries these three activities, which began in a common instinct of wonder, tended increasingly to diverge. A time was soon reached when their respective attitudes to life became quite incompatible, and they ceased almost entirely to interact.

Thus technicians and scientists concentrated on the understanding and control of natural forces, and evolved ever more efficient and powerful machines. Religious leaders told how through humility and faith a supernatural Being would comfort the sorrowful and provide a solution to the problems of a distracted world. Artists sought to utilize line or colour, words or musical notes, as symbols to express a mystical significance in things that was denied to the unaided human understanding. But only a handful of men since the dawn of human history have sought to combine the reports from these different activities to produce an overall picture of what we know of the Universe and our: selves.

No student of Earth history can regard this divergence of the means of knowledge without alarm. A certain amount of specialization is devirable on the mental as on the physical plane of existence, but evolution has given some awful warnings of what can happen when specialization begins to run away with itself. In the predominantly physical phase of evolution, before the appearance of Homo sapiens, the
degree of specialization was beyond the control of the organism exhibiting it. But fortunately with man this is not the case. The human consciousness is now sufficiently developed to grasp the implications of its own acts, and evolution can, within certain limits be deliberately controlled. If man is to avoid the pitfalls that brought about the downfall of his predecessors, it seems certain that a higher synthesis must be achieved between the different departments of thought.

The whole record of Earth history teaches us that evolution is moving steadily cowards greater awareness, and it is surely desirable that every available technique of knowledge should co-operate to further this process. Science, it is obvious, can give no complete or convincing account of a Universe which contains non-material qualities - beauty, for example, or goodness, or mind itself. The investigation of these phenomena is the province of art and religion. But it is also important to realize that both art and religion must take account of the views of science if they are to achieve the complete knowledge at which they aim. Religion especially, as its wiser leaders readily admit, is not yet completely emancipated from the bondage of dogma and prejudice, and until it can make a closer rapprochement with scientific thought there is little hope that a more accurate view of the Universe and its meaning will be achieved.
To sum up: science, art, and religion, evolving to new insight from their starting place in the mind of primitive man, are inseparable processes. They are all techniques of knowledge operating with equal validity at different levels of awareness. Science tries to answer the questions 'what?' and 'how?', art and religion the question 'why?'. Unless a new synthesis can be achieved between them the human race may be extinguished with the same tragic finality as the dinosaurs before them, without ever having perceived the true nature and significance of the Universe, of life, and of evolution itself.

This brief description of the pattern of human thought, and the evolutionary imperse into which it may now be
leading us, brings us to the end of our Guide to Earth History. With the close of the Pleistocene Epoch 10,000 years ago man was already setting out on the road to civilization. From being a hunter and food gatherer, living like a superior ape on the providence of the land, he was slowly learning the art of growing crops and domesticating animals. After many centuries of experiment he founded in Egypt and Mesopotamia the first great settled human communities in the history of the Earth. His story thereafter became a well-documented record of personalities and events - a story that is the fascinating climax of the great evolutionary processes which have manifested themselves through the 3,000 million years of Earth history.
The meaning of these processes we can only guess at , and our long jourrey must end, as it began, in wonder. And not wonder only, but humility, for no one can contemplate the majestic workings of the Universe without a profound sense of his own insignificance. Yet we who are numbered among the survivors of this mysterious record of growth and change can at least comfort ourselves with one reflection. Means of knowledge are open to us which were denied to every one of our less fortunate predecessors in the long procession of life, and these have at last given us some measure of control over our environment and our destiny. It is our responsibility as well as our privilege to sec that they are wisely used.

SELECTED BIBLIOGRAPHY

GENERAL

Axnold, Chester A. An Jntroduction lo Palobocang. McGraw-Hill, New York and London, 1947.
Berry, Edward Wildur. Palacontology. McGraw-Hill, New York and London, 19ag.
Davers, A. M. An Introduction to Palacantolagy. Murby, Landon, 1947.

Dusbar, Carl O. Historieal Grolog. Wilcy, New York, 1949-
Enozen, O. D. von, and Kenneth E. Cuter, Grolog. MeGrawHill, New York and Lendon, 1952.
Frourse, Lours. The World Before the Deluge, London, Paris, and New York, 1891.
Funzer, Jamzs G., Sir. The Golden Boughin Macmillan, London, 1936.

Ghleuly, Janres, A. C. Waters, and A. O. Woodpord, Primiples of Geology. Freeman, San Francisco, 1951.
Gcomrich, Eowin S. Stuties an the Structere and Deviopoment of Vertebrates. Macmillan, London, 1930.
Gercory, Wileuas K. Evolution Emerging. Macmillan, New York. 1951.

Haldanz, J. B. S. The Cawes of Eeolution. Longmans, Green, London, 1932.
Howard, A. V. Chambers's Dictionary of Scimzists. Chambers, Edinburgh and London, 1951.
Hussmy, Russezt C. Histarical Geolog. McGraw-Hill, New York and London, 1944
Huxcley, Juluan S. Enolwion: the Modern Syatheris. Allea and Unwin London, 1942.
Joleaud, Lioncr. Allas de Pallobioghographir. Lechevalier, Paris, 1939.

Kngoitt, Charses R. Before the Dawn of History. McGraw-Hill, New York and London, 1935-
Moore, Raymond C. Infroduction to Historical Genlog. McGraw-Hill New York and London, 1949.
Osnorn, Henry Fazruixld. From the Greeks to Damain. New York and London, 1894
Pivateav, Jean (Editor). Treile de Patomhoogie. Masson, Paris, 1952.

Rand, Hzarert, W. The Cherdates. Blakiston, Philadelphia and Toronto, 1950.
Romer, Alerko Shiswood. Man and the Vertebrates. University of Chicago Press, 1948. Reprinted in Penguin Books, 2954.
Royer, Alured Sherwood. Vertebrate Paleonfologg. Univerity of Chicago Press, 8945.
Simpson, Georor Gayzord. The Meaning of Enolution. Oxford University Press, 1950
Sinozr, Churles, Sir. A History of Biolog. Lewis, London, 1950. Sinoer, Catarles, Sir. A Shent Hisfory of Science. Clarendon Press, Oxford, ight.
Snider, Luther C. Eurth History. Century Co., New York, 1932. Swinnerton, H. H. Omlines of Palacontalog. Arnold, London, 1947.

Trosson, J. Arthur, Sir. Outlines of Zoalogy (Revised by James Ritchie). Oxford University Press, 1944
Welle, H. G. The Outline of Historg. Cassell, London, 8925. Wrus, H. G., Jelun S. Huxery, and G. P. Wells, Thu Science of Liff. Cassell, London, $193^{8 .}$
Wrartmas, W. P. D. The Groteth of Scientife Idnas. Edinburgh and London, 1951.
Zntzl, C. A. von. Hintory of Geology and Palseontolgy. London,
Zrrtel, C. A. vos. Texbboak of Palonentalogy. Macmillan, London 1913-32.

Part 1: PROLOGUE: THE EARTH

Bridcmax, P. W. 'Physical Effectrof High Pressure.' The Times Revine of the Progress of Srimer. London, Spring r952. Bupron, Gzorons Lous Le Clerc, Conte de. Epogues de la Natare. Paris, 177^{8}.
Csumaralis, T. C. The Two Solar Families. University of Chicago Press, 1928.
Gaxow, Grorez. Biography of the Earth. Viking Press, New York, 194^{2}.
Gruuspre, C. C. Genesis and Geolog. Harvard University Press, 1931. Gosss, EDuewd, Sir. Father and Son. Penguin Books, London, 1949. Grubuu, A. W. Tha Rhython of the Agss. Henri Vetch, Peking, 1940. Hoyce, Fry. The Nature of the Unierss. Blackwell, Oxford, 1951.

 Landens, 1 gis 日.
 Lendon, "ogg.
Jones, H. Spestiple, Sje, "The Scale of the Univerne:" The Times Seimes Reapiefo London, Atuturna 3954
 Mondr ('sth Edition), Pariv, sarat.
Lapt, G. M. "The Evolution of a Shrinking Enfth.' Quprerty

Oakleq, Kexnetil P. "Melhods of Dating Rones.' The Timef Scimer Reviens. London, AlatuEnu. 1954
 York, l9gs.

 $1953-$
 Umnarowi, J. H. F. 'On Fhythns in the History of the Earth." Grotogicar Magarime, 1935.
 1922.

Uwiwieove, J. H. F. Symphavy of the Earth. Nijhafit, The Hague, 1950.

Pakt II : The procession of life

 Cormbeck, New York, 1947-
 1954
 Williamy and Wilkira, Balkirnore, 1929.
Dhsert. K. A. Aaripif E, \& S. Livingatone, Edinburgh and Londien, 1952.
 Livingtont, Ediaburgh and Imondok, Ighe.

Buchssacse, Ruzph. Animals Withour Bechbones. Penguin Books, London, 195 ?
Burnet, F, M. Vinses and Mar. Penguin Books, London, 1953.
Coliert, E. H. Dinosaurs. American Museum of Natural History, New York, 1947.
Coungrt, E, H. The Dinosaur Book. American Museum of Natural Mistory, New York, 1931.
Civizr, Gzorces Lhopold Chrituen Fraditic Dhoohzrt, Baron. Recherchess sur les Ossumens Fossiles. Paris, $18: 2$.
Daly, R. A. The Changing World of the Set Agr. Yale University Press, 1934.
Darwis, Charles. On the Origin of Specties by Moens of Netural Selection. London, 8859.
Flint, Ruchard Fortha. Glacial Grolog and the Pleistocene Epoch. Wiley, New York, 1947.
Forde, H. A. The Heroise of Lyme Regis: the Story of Mary Arsing. Wells Gardner, London, 2925.
Haldane, J. B. S. 'The Origin of Life.' New Biohgr, No. 16, London, 1954
Hermann, Gerbard. The Origin of Birds. Witherby, London, 1926.

Hutchenson, H. N. Creakiars of Other Days. London, $1894-$
Hutcuinson, H. N. Extinat Mansters. London, 18ga.
Jarvix, Eauk. On the Fish-like Tail in the Iehthyostegid Stecoccphelians. C. A. Reitzels Forlag, Copenhagen, 1932.

Kiser, Johas. The Dountonian Farsha of Nontay. Kristiania, 1924.

Lavarci, Jian Baptbte Purde: Antone de Monet, Chevalict de. Philosthatic Zoologique. Paris, 1809.
Lankester, E. Riy, Sir. Extinct Animats. London, 1905 .
Ley, Witir. Dragons in Amber. Sidgwick and Jackson, London, :931.
Lay, Wuzcy. The Lungefeh and the Unicom. Hutchinson, London, 1948.

Laverew, Carl. Systma Naturaf. Lyon, 1735.
Mantele, Gidzon A. Journal, s8i8-52 (Edited by E. C. Curwen). Oxford University Press, 1940.
Matthew, W. D. Disoseurs. American Muscum of Natural History, New York, 1915.
Mutruew, W. D. Oufline and Gemeral Prinsiphes of the Histery of Lifo. University of California, Berkeley, 1928.
Miluer, Heor. The Old Red Sandstone. Edinburgh, 184.

Moore, Ruyhond C., G, Gr Lucker, and A. G. Fischer. Insertepraf Fitsritr. McGraw.Hill, New York and London, 1953 r.

 189.

Onkley, Kesseth P., and Mileba M. Muip-Wood. The sugacrion
 tary), Lendonan 1949.
Oparts, A. T. The Origin of Libe, Macenillars, New York, f93E,
 Noplit Amerika, New Yoriks 1910 .
 Londion, rity

Qvey, O. D. "Marine Preigroa al Indicators.' The Twher stience Revitur London, Summer 1954
 No. 16, Londen, 1954.
Prusole, J, W. S. 'The Evolution of Living Matter,' Net Diblog, No. :E, Londen, t 954
Raysom, Percy E. Prehidtope Lifa. Harvard Iniveraity Press, Cambridgen Mass., 1939.
 Hemishtery, Macmillan, New York, ipgiv.
Sepley, H. G. Dragoer ef fhr im. Londom, 1 got.
 sity Press,
Shrock, Ronert Rakea, and W. H. Twemagere Primithes of Inerthbrak Palloegothleg. MeGrew-Etill, New York, and Lopdon, L059.
 Rexiene of Jialky, Igss-

 195 .

Swentos, W. E. The Binosamfl. Murby, London,
 1931.

Whrre, E. I. ' Jamoghius Kerueodi, a new Cbordate from the Silurian of Lanarkshire' Gealogieal Magazine, London, 1946.
Whluston, S. W. Water Reptites of the Past and Present. Univerxity of Chicago I'ress, 19:4.
Woods, Hesay. Palaconialog: Insertsbrafs, Cambridge University Pres, 1946.
Wriourt, W. B. The Quatemary Ice Age. Macmillan, London, 1937. Zuunir, Frederick E. The Pleistocere Period. Ray Society, London, 1945.

Pazt III: THE RISE OF MANKIND

Albxunder, Sanuer, Artisfic Cration and Cosmis Creation. Henriette Herz Trust, London, 1928.
Beroson, Henrl. Greatime Eiobution, London, 1918.
Brentro, Jaeza Henry. The Conquest of Civilization. Harper, New York, 193^{B}.
Breurh, Henks. Beyond the Bounds of History. Gawthora, London, 1949.

Buevis. Herpu. Foum Hundred Centaries of Cass Ars. Centre d'Études et de Documentation Préhistoriques, Montignac, Dordogne, 1952.

Brond, C. D. The Mind and Ifs Place in Nanser. Kegan Paul, London, 1925.

Brodsick, Alar Houarron. Early Mafr. Hutchinson, London, 2948.

Brodryex, Alan Hovorton. Lascour: a Commentary. Lindsay Drummond, London, 1949.
Brodrick, Alan Hovohton. Prehistoric Painting. Avalon Press, London, 1948.
Broon, Rowsrt. Finding the Missing Link. Watts, London, 8950. Burktrt, M. C. The Old Stone Age. Cambridge Univenity Press, 1949.

Chaterer, Nopbest. Tan Yeasy Under the Earth. Penguin Books, Londen, 1952.
Chisoe, V. Gordon. Man Makes Himself. Wates, London, 1936. Childe, V. Gosdor. Sarial Enolution. Watts, London, 1951. Chiroz, V. Gozoon, What Happened in History. Penguin Books, London, 1952.
Currk, J. G. D. From Saragery to Civilization. Cobbett Press, London 1946.

 (Naturai Hetory), Londent, $19 g 0$.
Clatic, W. E. Lee Grof, 'New l'alatootoligical Evidence bearing on the Evalution of the Haminoidea." puardaty Juartal of the

Dexom, R, Br. The Buiding of Culturfs. C. Scribatris Sots, New York, 1 gaz 日.
 1946.
 Methuen, Lodion, 1940 .

Hoptos, Endiser Abspry. Up jfom the Apa Macmillan, New York, 1947.
Howelis, Willean. Mantind is Fiar American Museuf of Natural Hinlory, New York, 1947.
 London, 5 WV:
Jomes, F. Whop. Man's Plure Amang the Mammalis, Arnold, London, ug29.
Kerth, Authur, Sir. Comaning Man's Origin. Wats, London, 1997.
 Lendons, 1934 .

 York and Londen, 1953-
 Allen and Unwin, Lowden, 1953 .
 (Mataral History), Landon, 1960.
 89 Tg
 Times Basford, Lendon, Igst.
 Igà.
 Surric G. Eiyor, Sir. Human Fivaig. Cape, London, tge4

Sarrs, G. Eluor, Sir. The Search for Man's Anceslors. Watts, London, 8932.
Valloss, Henrs V. Les Hammes Fassiles. Masron, Paris, 1946.
Watson, Wikhus. Flint Implements. British Museum, London, 1950.

Wrennrelcit, Frunz. Apes, Giants and Man. University of Chicago Prese, 2946.
Wemser, J. S. The Pittdoum Forgry. Oxford University Press, 8955. Wracer, J. So, K. P. Oakley, and W. Li Lie Gros Cuare. The Solurion of the Piltionen Problem. British Muscum (Natural History), London, ${ }^{9} 953$.
Whiterrad, Alered Nortst. Nature and Lifo. Cambridge University Press, 1934
Whrrinzad, Alrred North. Srience and the Mfodem World. Cambridge University Press, 1926.
Windele, Fernand. The Lareax Cav Paintings. Faber, London, 1949.

Zuckzarus; Solly. Fonerianal Afinities of Man, Monkeys and Apes. Kegan Paul, London, 1939.
Zucxprsan, Soley. The Social Life of Mankegs and Apes. Kegan Paul, London, 8932.

INDEX

Acambthoditit 11 l
Acorn wortas， 10 ，
Acquited charateristios，inherl－ tance or， 74
Actintoptrygï，12ो
Adopis， 414

A gasalo，Lepuia，apa
Alberti，Freidrich ven， 147
Alyby
Aiforaurus， 55

Anbler，5a－3
Apiblypods，Tg4，FL．：IA
Aminu－stids，6ify

Amoeba，or，照－go
Amphibia，194－9
Anghiaxw，rog， mol ， nog

Anmpida， 143

Andes， $\mathrm{T} 4 \mathrm{l}, \mathrm{ffg}$
Andinamarthura 1 家
Andriar schuweherri， 49

Anteater，spings Ses Echuidna
Alothromprin，ind
Antiarchit， in $_{3}$

Ар：
Appendix，humbindr，79

PL fos

Archancordict Ener， 59

Meduanor，Giovainni， 59
Aratoales 4 II

Atsinwiherim，res
Arthrodirn， 1 IT－19

Atlantily， 44^{4}

Aurignacian culture

Ausitralopitheetint，axa－3，Fl．If
Azoic Era，${ }^{3}$
Dacterian，自－6
Dafuhilurivm，195－4， 19%

berch， 1 j！
Heetboven，Ludwig wop，zo
Belemaiten， $\mathrm{g}_{4} \mathrm{tan}-3$
Beliy river Commanion， 154
Preftowk mambiollia 54，205
Bige Foar Lick， 59

Eleck，Davidsoa， 204

Bos frimugevilus，Ser Aurochs

Erahhiopentur 155^{-6}
Mrain，of dinesaturs， $155-7 i$ of

 Fekin maty， 3954 of Nenaterthat

Baidgrans，P．W．，ga

Mrom，Robert，wisi
Bryezom，gh

Buffon, Georges Louis Leclere,
Comte de, 25, 37. 73
Burials, 295, 240, 242
Cocops, 130
Calamites, 137
Caledonian Chain, 118
Cambrian Period, 57, 30, 92-3, 95.fi grography of, 9f

Cesid dinas, 207
Carboniftrous Perind, 58, 59, 199-9: geography and climate of, 833 -4
Catacly yms, sheory of, 79-4
Cave bear, 206
Cave painting, 243-4, 249, 250, 231, P1. 86
Cellu, 80, 89-4; division of, 83
Cenozoic Era, 57, 58, 59, 62, 187 f .
Centipeder, 197
Centrosphere, 23 f.
Cepbalaupide, 112
Cuphalappis, 112
Cephaloporis, $1 \mathrm{OH}^{-2}$
Cerebral hernispheres, 181
Chalicotheres, 192-3, Pl. It
Chelicentrrium, 35
Chamberlin, T. C., 25
Chimaera, 119
Chlorophyll, 84
Choanichthyer, 120-2
Choodrichthyes, : :6, 8 :9
Chordach, 807
Choukoutienian culture, 220, 234-6, 227
Clactonian culture, sen, 226
Cladostlacku, : 19, P1. ob
Clark, W, E. Le Gros, 230
Clasuification of life-forma, 80-a
Climate, $60-3$
Climetian, 1:37, Pl. 24
Conl, 193 - 3
Coal foretts, 133 f.
Coccowinx, 1 it
Cockroaches, 137
Coelacanth, 12:-2
Conlenterata, 95, 99, 210

Comparative anatomy, 77, 79
Compragnathes, 155
Condylarths, 194
Conifers, 139, 150, 192, 293
Cooking, 225, PL. 445
Cope, E. D., 170
Copernirus, 16, 39
Coprolites, 54
Corals, 99-100, PI. 14
Corda, August Joseph, 196
Cordaites, $136-7,139$
Correlation of strata, 63-4
Cosmozoass, 67
Cotylouaurs, 199, 141-3
Creodonts, 598, 199
Cretaceoris Period, 58, 147-9, 150 157-61, 170
Crinoids. Ses Sea Lilles
Crosodiles, 170-1, 190
Cro-Magnon man, sso, 239-40
Crossoperyyii, 121, 127
Cryutals, 68-9
Cuvier, Georges Ltopold Cbretien Frtderic Dagobert, Baron, 49, 50, 35, 72-4, 77, 259, 166, 163-9, 172, 193
Cycads, 150, 198
Cyclops legend, 49-50,50
Conotictis, 199
Comarnathas, 145, 282, P1. gh
Cyztoids, 95
Cytoplasm, 84
Dalmanites, $1: 6$
Dart, Raymond, 221-2
Darwin, Charles, 74-5, 192, 210
Darwinism, 74-5, 210, 212
Davy, Humphry, Sir, 306
Dawson, Charles, 238-30
Deciduous trees, 250, 191
Deer, red, 139
Devonian Period, 58, 115 f .
Diatoms, 124
Diatgrena, 192, 199
Dimetrodon, 144, Pl. ge
Dinichetys, 1 19, Pl. ab
Dinocepbalia, 145

Dingrais．Sue Moa
 batin of 1 gh－7i reproduction ing 1 向的
Dinnilherices， 197

Diphodras， 135
Diphemeriteron，199，${ }^{1} 4^{1}$
Dippoci 101
Diprotadot， $1 \mathrm{~g}_{\mathrm{g}}$
Dpropidmow，at5－16
Dubain，Eqgener 29

 2a－B；tenperacife of z！－a
Earith chroadoryp 49－3，34f
 rhythom in，6o－2
Eurchquaken， 3 s
Ectaidna， 18.4
Echimodermath，95，104，E19

Electiran siatrancype，60
Elephant，evolution of 5 ，

Esanthratur．Set Piltidowa man

Epprinura 190
Fabijpaur，TSt ray，
Eolithm，
Epachu，geological，50， 59

Ey，war，1g6

Eras，geclorical， $5 \int_{5} 5$
Eria， 113
Efyen $1290-30$

Evolution， $54.74=57-80$

Fofiex daty，gor

Fishes，Age al $515 / 4$
Flagedlatio，昭
 pletrishiani，154－\％
Flowering planta．fin Angisoperna

Foasis， $46 / 4$ as guides to climate
 na aids to praluengergraphy，ga：

Fox，anctics 206， $25{ }^{5}$ E
Eregh likeryate of a sab
Gialaxy， 150
Gampids．Ser Actinapterygi
Gcophyzicis 29
Gitatarw， 57
Genner，Conrad： 43
Giants，49－50
Ginar＂Cmuenay，189
Ginkgos， $450,100^{\circ}$

Giphtodan，TLL 3 ad
Goidwitnalaed．ga
Gease Philip．50－t
Craptolher， $99-\mathrm{rop}$ ，Fl． 14
 ＋103
Great Rif Willay，igo
Griantide man，240，

Giktalupe mourtion，Is
Hinekel，E．II．，${ }^{2}$ 多
Heidelbers Enati，29\％，－93T
Hermanna，Faul，ut
Herroderur， 4

Himnlayas, 389
Holocene Epoch, 58, 59, 187, 203, 221
Homo meanderthalenris. See Neanderthal man
Ham sepiers, 192, 219, 220, 236, 237f., Pl. 16a, P1. 166
Hopwood, A. T., 215
Horse, evolution of, 194, 895
Honctails, 126, 137
Hoyle, Fred, 27
Hivene, Blaron voa, 153
Hutton, Jariset, 42-3
Hyumoden, 808
IHydrosphere, 99
HSArilophodan fori, 175, 176
Heracothariam. Ser Eahippas
Ice Age, Pleastocese. See Great Ice Age
Ice Aget, Cambrian, Go; Permian, 138
PClyhyontis, 199, PI. ios
Ichthyotaur, $59,165-7$, P1. Bo
Igneous rocks, 9 .f, 39-12
Jgmandon, 159-60, 260
Implemenis, human, 289, 225-7,
247, 153, 293-4, 243, 243-4
Iodex fosmils, $\mathrm{O}_{3}-4, \mathrm{~g}^{2}$
Interglacial Periods, 209, $2 \mathrm{O}_{4} \mathrm{f}$.
Invertebrater, Age of, 92, 95f. PL 14
Ivanovsly, Dmitry, 68-9
Jemaytiv, 107, sob
Java man, 290, 223-4
Jeans, James, Sir, 26
Jefferson, Thomas, 53
Jeffrey, Harold, 26
Jelly-fish, 95, 99, PL. is
Jurassic Period, $58,147-8$; geography of, 849

Kangarocs, $: 84$
Kannemeyeric, 145, P1. sb
Knnt, Immanuel, 29

Karroo formationa 142, 145
Keith, Arthur, Sir, 229
Kelvin, Lord, \$2,67
Kimer, Johaa, $\operatorname{tog}_{2} 111$
Kingliey, Charles, 51
Kramaraurws, 168

Labyrinthodonts, :28-9:, PL 4
Lamanck, Jean Baptiste de Monet,
Chevalier de, $50,74,18$
Lamarckism, 76
Laminariales, 124
Lamp shells. See llrachiopods
Lampreys, 809
Land bridges, 185, 207
Laplace, Pierre Simon, Marquí de, 24-5
Lamesux, 243, 250, 251
Lees, R. M., so
Lemurs, 219, 219, 214
Leonardi da Vind, 49
Lepidodendron, 136
levalloisian culture, $280,226-$; 207
Lise, origin of, 66-7:
Life forms, classification of, 80-2
Lingula, 100
Linnaeus, Cart, 75, 8t-2
Lions in Yorkahise, 207
Lithosphere, $29 f$.
Lobnih, Fellx, Is
Laxadenta efricaness, 195
Lungfish, 121-2
Lunge, development of, 120-2
Lycopods, 126, 195-6, 138
Lyell, Charles, Sir, 43, 74
Lyme Regis, fonils found at, 100°, 364-5, 178
Lypx, 207
Lystleton, R. A., 27
Macrecystis, 124
Magdalenian culture, 220, 249, 245
Magic, humting, 25:
Magroline, 150, 190
Maidenha ir trees Ses Cinigos

Aammals, 180 ff ; Age of, 192 f ;) decline of, $192,206-7$
Sammoth, 50, 50, 197, 806-7, PL. 136
, fammathur ienperater, 207
Mantell, Gidean, 159
Maple, 89 :
Marmot, steppe, 806,238
Marsupials, $\mathrm{s}_{3}-\frac{2}{2}, 198$
Malka, K. Jr, 240
Mastodon, 195, 197
Megawnfa, 197
Megatherinm, P1. saa
Aerychipsws, 194, 195, 196
Sesohippor, 194, 195, 196
Acsolithic Age, 850,221
Resosaurs, 863
jferozoic Era, 57, 58, 61, 140f: climate of, 1 go
Setcorites, $32-3$
Viacids, 199
jficrolreoths, 198
flicrosnurs, ${ }^{19}$:
fillisy Way, ${ }^{\text {tg }}$.
filler, Hugh, is 8,112, 117-18
$\mathrm{F}^{\text {IIllipedes, }: 37}$
jfiocene E.pnet, 58, 59, 187f. $\ell^{\text {fisassippian Period, 59, }}$:33
Tixogetrus, 805
10a, 808 , 208
Morrithorism, r95, 196-7
Mollusca, 95, 101
Monkeys, 2818 .
Monotremes, :84
iforepere, PL, is is
fornsaurs, $168-9, \mathrm{PJ} .85$
ifoss animale. See Dryozoa
joulton, F. R., 25
1 fousterian culture, $220,333,233$
j fulcituberculata, 183
Aurchison, Roderick Impey, Sir,
106, 1:1, 113
Musk ox, 238
Mutations, 73
Natural selection, 75
Nautilus, 102

Neanderthal man, $820,338-6$,
PL. 13
Nebular hypothesls, 24-3
Nebulac, extra-galactic, 19
Neolithle Ace, 290, 221
Nortagstis, 124
Nerve cord, sob-9
Nipa palms, 190
Noctartius, 215,214
Nothosaurs, 163
Notochord, 107-10
Nucleoproteins, 86
Nucleu, 84/.
Oakley, Kenneth, 230
Oaks, $190-1$
Oarweeda, 124
Oligocene Epoch, 58, 39, 387 f.
Optiderpatan, 138
Ordovician Period, 57, 58, gef.
Ornithischia, 195, 197
Osteich thyes, 117, $819-22$
Ostolepies, 187, 137, 129
Ovtracoderma, 181-12
Owen, Richard, Sir, 153, 172, 177
Oysters, 95
Palaeniscoidrs: 30
Palecocene Epoch, 58, 59, $887 f$.
Palsoogeography, 93
Palacolithic Age, 520, 22 : f.
Palanomastover, 125, 197
Palaeontology, technique of, 55
Palneozoic Era, 37, 3\&, 68
Pantocheria, 189
Paramecia, 07, 88-90
Pasapiharus, $214-15$
Perasamolother, iso
Perrianans, $142,142-3$
Pasens, 117
Pearly aautilus, 102
Peat, $833-9$
Peklin man, sso, $824-6$, PL 14 b
Pelycossurs, 144
Pensaytvaninn Period, 59, iss
Periods, geological, 524,58
Permian Period, 58, 138, 140-7

Ferminenlixation， 57
Petriited Forat of Arizont， t 50
Phodersefur，［7］
P movarbeces，rem

Phytonaturs， 147

 PL 14
Placodermi，：16－ria
IMacodeen， 4 何
Plantlatial hypotheris，2S－6
Flanets，17－1日，暗
Plants，bevelopmerst of $\mathrm{ra} f f_{\mathrm{f}}$ ； Merobic， 4 fri Cencasic，ege－ 1 ， Fowilized， 35

Plasypus，datk billed， $1 \mathrm{I}_{4}$
Floistofere Epoch，sin 59，1Eb， 402f，䉼
Plesiothurs， $16 y-2$, P1． B_{a}
Pturincourst 365
Fintaded

Pfinfourtal，16日

Pratidom，gy

Precession of the emuinayts，Es

Primary Period， 59

Prafulagicheraf，214

Properoxole Era， 37 ， 5 H
Protisen，的等－4
Probtrafots，160
 Tgs
Protophyta，影

Protistrga， 170
Prolaman 8 亩 $=50$
Praxitha Coniagri，ag

Pterapipda，JITs
Pleraphy，tiapirz
Firnith chy wow

Pletodactylisa See Plerosaurs

 175－6
$P_{\text {Pblemaic ajatera，}} 16$
Proletioy，Cladiu， 15
Puma， 90

Radicactivisy， $92,44=5$
Radiolerin，gst－3，of
Rinncho la Irea，mot
Ratlish．Sof Chimbera
Thay，rtg
Redlichia sea， 93
Reindecer， 50.6 ， 389 －9
Reinder Age z39f：
Reptilan，ruof；extinetion ofi，if
Ahamptrjpathur，173．P1．ga
Reinorros trowhimive Str Worlt． rhineserod
Rithter，Hierapyonus；6y
Nohàiano Dtep，30－1

Subrewathed cots．So Stabbia cay
3xiga antelopes，29g
Salhmander，I3ty
Salt， r （15－1 1

Smuroped difotaurs，35－6

Anor，icale trece，Wes Lyepopds
3 do chathorough，gyencti 14,150
4sm cheuchzer，Johann， 49
12．chotemback，OuO， 999
；fam inlovarrus，i6
Man ledricns，ty？

War bea cucumbers，息家

1 Enalls，xith
Senweed， B_{3} ， 1 P4－ 5
Eecondary Periad， 50
Sedgwick，Adeni， 115
Sedimentary rocke，34－4，41－3

害equaias， 1 y

Semouria，141， ， 4 ir
Shakespetet，walinra，zo
Sharks， 11 g
Elaurkis，apiny，suct Acanthowti
Sbelly growth of g 95－7
Sigillaria， 193^{-5}
 196
 climate of 1 co
Sinarthrapur，当生4
Sipharephyout ity
Skatcs ty

Smink，Grallon Elion，Sir，azg
Surithn，Willisarn， $14 \mathrm{y}^{\text {t－}}$
Spmilu， 55,137
Solar disruption．is
Solar Syutem，riff．

 33

Spore－benting plowis， 135

Equids，95
Stabling then，yp－ain
Stanley，W．M．${ }^{\text {Hon }}$

Searuain，tramutioll hed rhine－
ceron preserved ath 54
Stroveralk｜in in， 120
Stypravid，157，rif
Stegorelachil｜ $1[5$
Stead，Nichalan， 49
Sipmit Agra，Har Palzalthic，Menor Githis，neld Neoliathic

Sjeracquaunid， 359
Sun，17\％

Supernume，s7 7

Taybor，Eert Le，an dinoasara， 156
Teell of caralwore， $150-$ ow
Telanerara 193
Tenotis． 3 ge

graphy and climate off， taj_{3}－go
Telly
Tetraliffions，age Tg7

Theophratilis， 4 B
Thesapaid， $143-5$

Thermil cyclen， Er 2
Tiger nibice－toothed．Ser \＄labbing cati
Trfankind
Titanchownar patrar； 445
Titanotheres，1fal
Tobacco mesaic winu，Ey
Tools．Su Implementer
Trackwayn，fonsil， 54
Trec Fermy，106，13T， 150
Tree threws，ziry ins
Triaptle Period，yat 847
Tricradag；158，Jl．Ta
Trilobing， $\log _{5} 5,5,1.4$, PL， 14

Tunicaled
Turtlen, marivic, 1 ot
Twickenlenm, crocodller as , igo
Tysuricaurus tex, 1gti, El, 7a
Uiflodicrimp Fi, that
Uriformitariacilia, 43
Delversc, sixa of 昭-so
Ural mountains, 1 gh
Ufriw gerlacest. Stat Cave bear
Uhact James, 34
Vafealar platien 1 195
Vermes, g6, 10 t
Vertobsates, jofir
ymdex
Vestigial ftructartis, $79-80$
Vinch, Leonardo da, 49
Vines, 140
Vindt, trbacte mopaic, fag
Vineseran
Walthar jobapnes 180
Weidenfeich, Friniz 295
Whener, J. So 2gr
Whitby, bosite fround ar, tog
Woodward, Axthas Smith, Sirif ${ }^{2} \mathrm{~F} 9$
Woolly rhinocerod, $206=7$, FI. Igd Wiprive Sie Vermes

Zebrin, Grevill 195

